Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oil sands pollution comparable to a large power plant

23.02.2012
It takes a lot of energy to extract heavy, viscous and valuable bitumen from Canada's oil sands and refine it into crude oil.

Companies mine some of the sands with multi-story excavators, separate out the bitumen, and process it further to ease the flow of the crude oil down pipelines. About 1.8 million barrels of oil per day in 2010 were produced from the bitumen of the Canadian oil sands - and the production of those fossil fuels requires the burning of fossil fuels.

In the first look at the overall effect of air pollution from the excavation of oil sands, also called tar sands, in Alberta, Canada, scientists used satellites to measure nitrogen dioxide and sulfur dioxide emitted from the industry. In an area 30 kilometers (19 miles) by 50 kilometers (31

miles) around the mines, they found elevated levels of these pollutants.

"For both gasses, the levels are comparable to what satellites see over a large power plant - or for nitrogen dioxide, comparable to what they see over some medium-sized cities," said Chris McLinden, a research scientist with Environment Canada, the country's environmental agency.

"It stands out above what's around it, out in the wilderness, but one thing we wanted to try to do was put it in context."

The independent report on the levels of these airborne pollutants, which can lead to acid rain if they are in high enough concentrations, is a part of Environment Canada's efforts to monitor the environmental impact of the oil sands' surface mines, McLinden said. While some land-based measurements have been taken at particular points by other researchers, and a NASA airplane made another set of localized measurements, no one had calculated the overall extent of the oil sands' air quality impacts including the giant dump trucks, huge refining facilities where the bitumen is processed, and more.

To do that, McLinden and his colleagues turned to satellite data. Several satellites orbiting Earth detect sunlight that passes through the atmosphere and is reflected back up to the space. Based on the patterns of reflected wavelengths, scientists can calculate the concentration of certain gasses - in particular nitrogen dioxide and sulfur dioxide. It's a relatively new way to study pollution over small areas, he said.
The study is published today in Geophysical Research Letters, a publication of the American Geophysical Union.

The scientists found that sulfur dioxide amounts peaked over two of the largest mining operations in the Alberta oil sands, with a peak of 1.2x10^16 molecules per square centimeter.
Nitrogen dioxide concentrations reached about 2.5x10^15 molecules per square centimeter. When researchers looked at the concentrations over the years using older satellite information, they found that the amount of nitrogen dioxide increased about 10 percent each year between 2005 and 2010, keeping pace with the growth of the oil sands industry.

"You'd certainly want to keep monitoring that source if it's increasing at that rate," McLinden said. "There are new mines being put in, they're pulling out more oil."

It's important to examine the overall impact of the excavation and processing from the oil sands, said Isobel Simpson, an atmospheric chemist with the University of California at Irvine. She was not involved in this study, but previously participated in the airplane-based research of air quality over the oil sands.

"There are so few independent studies of oil sands," Simpson said. The new study is something scientists haven't been able to do before-to "see the big picture and the birds-eye view of the impact of emissions from the oil sands industry," she said. She called for broader, future studies that would measure additional pollutants and map their extents. With the oil sands industry expanding, she said, the area needs more monitoring.
Notes for Journalists
Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this paper in press by clicking on this link:

http://dx.doi.org/10.1029/2011GL050273

Or, you may order a copy of the final paper by emailing your request to Kate Ramsayer at kramsayer@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release are under embargo.

Title:
"Air quality over the Canadian oil sands: A first assessment using satellite observations"
Authors:
Chris A. McLinden and Vitali E. Fioletov: Environment Canada, Toronto, Canada;
K. F. Boersma: Royal Netherlands Meteorological Institute, De Bilt, The Netherlands and Eindhoven University of Technology, Fluid Dynamics Lab, Eindhoven, Netherlands;

Nickolay A. A. Krotkov: Laboratory for Atmospheric Chemistry and Dynamics, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA;

Chris Sioris: Environment Canada, Toronto, Canada;

Pepijn Veefkind: Eindhoven University of Technology, Fluid Dynamics Lab, Eindhoven, Netherlands and Delft University of Technology, Delft, The Netherlands;

Kai Yang: Laboratory for Atmospheric Chemistry and Dynamics, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA, and Department of Atmospheric and Oceanic Sciences, University of Maryland, College Park, Maryland, USA.

Contact information for the authors:
Chris McLinden, Telephone: +1 (416) 739-4594, and Email: chris.mclinden@ec.gc.ca

Kate Ramsayer | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>