Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oceanic Crust Formation Is Dynamic After All

27.11.2009
Earth scientists at Brown University have found strong evidence that the geological processes that lead to the formation of oceanic crust are not as uniformly passive as believed. The team found centers of dynamic upwelling in the shallow mantle beneath spreading centers on the seafloor. Findings are published in this week’s Nature.

Imagine the Earth’s crust as the planet’s skin: Some areas are old and wrinkled while others have a fresher, more youthful sheen, as if they had been regularly lathered with lotion.

Carry the metaphor a little further and a good picture emerges of the geological processes leading to the creation of the planet’s crust. On land, continental crust, once created, can remain more or less unaltered for billions of years. But the oldest oceanic crust is only about 200 million years old, as new crust is continually forming at midocean ridge spreading centers.

While geologists have known that oceanic crust continually replenishes itself, they have been unsure what occurs below the surface that leads to the resurfacing. What geodynamics are occurring in the mantle that eventually produces new crust, that new layer of skin on the ocean’s bottom?

The answer has been elusive in part because oceanic crust is difficult to reach and instruments that can measure seismic activity have not fully covered the terrain to obtain an accurate picture of forces below the surface. Now earth scientists led by Brown University have observed — in detail and at unprecedented depths — a geological phenomenon known as dynamic upwelling in the underlying mantle beneath a spreading center. Their findings, reported in this week’s Nature, may resolve a longstanding debate regarding the relative importance of passive and dynamic upwelling in the shallow mantle beneath spreading centers on the seafloor.

“We know the crust of the ocean is produced by upwelling beneath separating plates,” said Don Forsyth, professor of geological sciences at Brown. “We just didn’t know the upwelling pattern that took place, that there are concentrated upwelling centers rather than uniform upwelling.”

Mantle upwelling and melting beneath spreading centers has been thought to be mostly a passive response to the separating oceanic plates above. The new finding shows there appears to be a dynamic component as well, driven by the buoyancy of melt retained in the rock or by the lighter chemical composition of rock from which melt has been removed.

The scientists from Brown and the University of Rhode Island based their findings on a high-resolution seismic study in the Gulf of California. In that region, there are 25 seismometers spaced along the western coast of Mexico and the Baja California peninsula, which lie on either side of the Gulf of California. Yun Wang, a Brown graduate student and the paper’s lead author, tracked the velocity of seismic waves that traveled from one station to another. She noticed a pattern: The seismic waves in three localized centers, spaced about 250 kilometers (155 miles) apart, traveled more slowly than waves in the surrounding mantle, implying the presence of more melt in the localized centers and thus a more vigorous upwelling. From that, the geologists determined the centers, located 40-90 kilometers (25 to 56 miles) below the surface, showed evidence of dynamic upwelling in the mantle.

“We found a pattern that was predicted by some of the theoretical models of upwelling in midoceanic ridges,” Forsyth said.

While other studies have been done of mantle geodynamics, most notably an experiment on the East Pacific Rise, the Brown-URI study imaged seismic activity, or the shear velocity of the seismic waves, some 200 kilometers (124 miles) below the surface — a far deeper seismic penetration into the mantle than previous experiments.

Brian Savage, assistant professor of geophysics at the University of Rhode Island and a contributing author on the paper, said the finding is important, because it helps to provide “a basic understanding of how a majority of the earth’s crust is formed, how it emerges from the mantle below to create the oceanic crust. It's a basic science question that helps understand how crust is created.”

The research was funded by the National Science Foundation.

Richard Lewis | EurekAlert!
Further information:
http://www.Brown.edu

More articles from Earth Sciences:

nachricht Improved monitoring of coral reefs with the HyperDiver
24.08.2017 | Max-Planck-Institut für marine Mikrobiologie

nachricht Hidden river once flowed beneath Antarctic ice
22.08.2017 | Rice University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>