Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Northern oceans pumped CO2 into the atmosphere

27.03.2017

At the same time the pH of the surface waters in these oceans decreased, making them more acidic. Both of these findings imply changes in ocean circulation and primary productivity as a result of natural climate changes of the time. The findings were recently published in Nature Communications.

Oceans changed function


The illustration identifies the high-latitude North Atlantic as a significant CO2 sink (The purple areas are the most efficient sinks, while red ones are sources of CO2 in the modern ocean). The white star shows the location of the studied sediment core. The map was generated using data of Takahashi et al. Illustration: M. Ezat/CAGE.

Credit: Mohamed Ezat

Today the cold Arctic and Nordic Seas are especially efficient areas for uptake of CO2 from the atmosphere. (LINK) The oceans have been capable of mitigating some of the increase in greenhouse gas release resulting from human activities such as combustion of fossil fuels, by absorbing about 40% of the emitted CO2

"But our research shows that areas in Norwegian Sea on several occasions through the past 135 000 years had changed their function: instead of absorbing CO2 from the air, they released more of the greenhouse gas into it." says first author of the study Mohamed Ezat from Centre of Arctic Gas Hydrate, Environment and Climate (CAGE), Department of Geosciences at UiT The Arctic University of Norway.

First study of its kind from the Nordic Seas

Ice cores from Antarctica show that the amount of atmospheric CO2 varied in pace with the shifting climate of ice ages and interglacial periods of the past. (LINK)

"We always thought that oceans played a major role in these shifts, as it is the largest active CO2 reservoir on this time scale. But it has remained unclear how and where in the ocean CO2 was stored and released from", says Ezat.

Ezat and colleagues measured the boron isotopic composition of the fossil shells of near-surface dwelling, single celled organisms called foraminifera. These were collected from a marine sediment record from the Norwegian Sea spanning the last 135 000 years. This period includes two warm interglacial periods and one long-lasting ice age characterised by abrupt climate changes.

"We saw that at the end of several of the severe cooling periods in the region, so-called Heinrich events, the ocean became more acidic and later released CO2 into the atmosphere. These episodes of CO2 pumping from the Nordic Seas coincide with times of increase in atmospheric CO2." says Ezat.

Measuring pH through thousands of years

"The variations in boron isotopes can tell us about the development in seawater pH through time and in turn give us information about the CO2 concentration in the seawater. " explains co-author professor Tine L. Rasmussen, also from CAGE.

Doing so, the scientists were able to reconstruct the surface ocean pH and CO2 in the Norwegian Sea in relation to past climate variations, when it was warmer or colder than today. Ezat and colleagues also tried to understand why the air-sea CO2 exchange reversed in the Norwegian Sea during these times.

"We found that changes in primary productivity, input of terrestrial organic matter, and deep-water formation in the Nordic Seas, all contributed to the release of CO2 from the ocean." says Rasmussen

Never as acidic as today

The study shows that these seas had lower pH during the episodes of CO2 release. This can however not be compared to the extent of ocean acidification that we see happening today. (LINK)

"Results of our study actually show that the sea surface pH throughout the last 135 000 years has never been as low as today in our study area. This is not an unexpected result. It is similar to previous studies conducted in other ocean areas. It does however add a body of evidence to the hypothesis that human activity is profoundly affecting the chemistry of our oceans." Ezat says.

Scientists hope that the results will contribute to a better understanding of complex interactions between the ocean and atmosphere.

"In general, the more we learn about past changes in the Earth's climate system, the more accurate we hope we can predict the future." says Ezat.

Media Contact

Mohamed Ezat
mohamed.ezat@uit.no

 @CAGE_COE

Mohamed Ezat | EurekAlert!
Further information:
https://cage.uit.no/news/northern-oceans-pumped-co2-atmosphere/

Further reports about: Arctic Atmosphere CO2 Hydrate acidic atmospheric CO2 greenhouse gas interglacial periods

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>