Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The North American Cordillera: Constructive collisions

04.04.2013
The mountain ranges of the North American Cordillera are made up of dozens of distinct crustal blocks. A new study clarifies their mode of origin and identifies a previously unknown oceanic plate that contributed to their assembly.

The extensive area of elevated topography that dominates the Western reaches of North America is exceptionally broad, encompassing the coastal ranges, the Rocky Mountains and the high plateaus in between.



In fact, this mountain belt consists of dozens of crustal blocks of varying age and origin, which have been welded onto the American continent over the past 200 million years. “How these blocks arrived in North America has long been a puzzle,” says LMU geophysicist Karin Sigloch, who has now taken a closer look at the problem, in collaboration with the Canadian geologist Mitchell Mihalynuk.

Collisions and continental growth

One popular model for the accretion process postulates that a huge oceanic plate – the Farallon Plate – acted as a conveyor belt to sweep crustal fragments eastwards to the margin of American Plate, to which they were attached as the denser Farallon Plate was subducted under it. However, this scenario is at variance with several geological findings, and does not explain why the same phenomenon is not observed on the west coast of South America, the classical case of subduction of oceanic crust beneath a continental plate.
The precise source of the crustal blocks themselves has also remained enigmatic, although geological studies suggest that they derive from several groups of volcanic islands. “The geological strata in North America have been highly deformed over the course of time, and are extremely difficult to interpret, so these findings have not been followed up,” says Sigloch.

Sigloch and Mihalynuk have now succeeded in assembling a comprehensive picture of the accretion process by incorporating geophysical findings obtained by seismic tomography. This technique makes it possible to probe the geophysical structure of the Earth’s interior down to the level of the lower mantle by analyzing the propagation velocities of seismic waves. The method can image the remnants of ancient tectonic plates at great depths, ocean floor that subducted, i.e., disappeared from the surface and sank back into the mantle, long time ago.

Intra-oceanic subduction of the Farallon Plate

Most surprisingly, the new data suggest that the Farallon Plate was far smaller than had been assumed, and underwent subduction well to the west of what was then the continental margin of North America. Instead it collided with, and subducted under, an intervening and previously unrecognized oceanic plate. Sigloch and Mihalynuk were able to locate the remnants of several deep-sea trenches that mark subduction sites at which oceanic plates plunge at a steep angle into the mantle and are drawn almost vertically into its depths.
“The volcanic activity that accompanies the subduction process will have generated lots of new crustal material, which emerged in the form of island arcs along the line of the trenches, and provided the material for the crustal blocks,” Sigloch explains.

As these events were going on, the American Plate was advancing steadily westwards, as indicated by striped patterns of magnetized seafloor in the North Atlantic. The first to get consumed was the previously unknown oceanic plate, which can be detected seismologically beneath today’s east coast of North America. Only then did the continent begin to encounter the Farallon plate. On its westward journey, North America overrode one intervening island arc after another – annexing ever more of them for the construction of its wide mountains of the West.

Luise Dirscherl | EurekAlert!
Further information:
http://www.lmu.de

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>