Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ways for understanding the link between the uplift of the Tibetan Plateau and species diversity

08.05.2014

A team of Austrian, Swiss and German researchers the Biodiversity and Climate Research Centre (BiK-F), the Senckenberg Gesellschaft für Naturforschung and the German Centre for Integrative Biodiversity Research (iDiv), from the University of Leipzig and the Leibniz-Institute of Freshwater Ecology has summarized the current state of knowledge on the diversification of Tibetan plants and animals. Scientists The study focuses in particular on how the geological processes that led to the rise of the Qinghai-Tibetan Plateau and Himalayas affected diversification and speciation directly, and indirectly, e.g. by changing climatic conditions. The paper was recently published in Biological Reviews.

“We believe this paper may become a benchmark for geo-biological studies worldwide. It links the geological, climatic and evolutionary history of one of the most fascinating and biodiverse regions of the world, and builds up a promising framework for more hypothesis-driven and synthetic research”, says Prof. Alexandra Muellner-Riehl, from the Department of Molecular Evolution and Systematics of Plants in Leipzig. She heads the DFG Research Cluster and is also member of the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig.

Muellner-Riehl and her collaborators found that the link between diversity, speciation and the geological processes was still poorly understood. They identified two main reasons for this: different authors tend to use a different geological framework in their studies, and they apply different analytical approaches and data that are poorly comparable.

The authors show three ways how our understanding of the link between uplift processes of the Qinghai-Tibetan Plateau and the Himalayas and species diversity can be improved:

1) They provide a state-of-the-art scenario how the uplift occurred and how this influenced regional climates over the last 40 million years; this will allow future researchers to formulate clear and comparable hypotheses.

2) They summarize recent analytical developments that allow scientists to make the link between geology and diversification more quantitative and less ad hoc.

3) They propose using meta-analyses of many comparable data sets to help researchers gain a broader understanding of species diversity in the region.

“It is very likely that the uplift of the Qinghai-Tibetan Plateau had different impacts on the evolution of different taxa”, lead author Dr. Adrien Favre, Department of Molecular Evolution and Systematics of Plants, University of Leipzig, Germany, points out. “We wanted to provide details on the criteria that individual data sets should meet to guide future research”, adds co-author Dr. Steffen Pauls, Biodiversity and Climate Research Centre (BiK-F).

This research is presented in the paper “The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas” to appear in Biological Reviews (DOI 10.1111/brv.12107). The scientific article is available online (open access), free of charge: http://onlinelibrary.wiley.com/doi/10.1111/brv.12107/full

The team is composed of Adrien Favre 1,2, Martin Päckert 2,3, Steffen U. Pauls 2, Sonja C. Jähnig 2,4, Dieter Uhl 5, Ingo Michalak 1 and Alexandra N. Muellner-Riehl 1,2,6

1 Department of Molecular Evolution and Systematics of Plants, University of Leipzig, Germany
2 Biodiversity and Climate Research Centre (BiK-F) & Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
3 Senckenberg Natural History Collections, Museum für Tierkunde, Dresden, Germany
4 Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
5 Section of Palaeoclimate and Palaeoenvironmental Research, Senckenberg Research Institute and Natural History Museum, Frankfurt, Germany
6 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena Leipzig, Germany

For more information please contact

Prof. Dr. Alexandra Muellner-Riehl
Department of Molecular Evolution and Systematics of Plants,
Institute of Biology, Leipzig University
Tel. +49-(0)341 97-38581
Muellner-riehl@uni-leipzig.de

or

Dr. Steffen Pauls
LOEWE Biodiversity and Climate Research Centre (BiK-F)
Tel. +49 (0)69 7542 1841
Steffen.pauls@senckenberg.de

or

Sabine Wendler
LOEWE Biodiversity and Climate Research Centre (BiK-F)
Press officer
Tel. +49 (0)69 7542 1838
Sabine.wendler@senckenberg.de

Weitere Informationen:

http://www.bik-f.de/root/index.php?page_id=267&year=0&ID=693
http://- Press release and more press images
http://www.bik-f.de
http://- LOEWE Biodiversity and Climate Research Centre

Sabine Wendler | Senckenberg

Further reports about: BiK-F Biodiversity Climate Department Evolution Leipzig Molecular Plants Plateau Senckenberg analytical diversity species

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>