Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ways for understanding the link between the uplift of the Tibetan Plateau and species diversity

08.05.2014

A team of Austrian, Swiss and German researchers the Biodiversity and Climate Research Centre (BiK-F), the Senckenberg Gesellschaft für Naturforschung and the German Centre for Integrative Biodiversity Research (iDiv), from the University of Leipzig and the Leibniz-Institute of Freshwater Ecology has summarized the current state of knowledge on the diversification of Tibetan plants and animals. Scientists The study focuses in particular on how the geological processes that led to the rise of the Qinghai-Tibetan Plateau and Himalayas affected diversification and speciation directly, and indirectly, e.g. by changing climatic conditions. The paper was recently published in Biological Reviews.

“We believe this paper may become a benchmark for geo-biological studies worldwide. It links the geological, climatic and evolutionary history of one of the most fascinating and biodiverse regions of the world, and builds up a promising framework for more hypothesis-driven and synthetic research”, says Prof. Alexandra Muellner-Riehl, from the Department of Molecular Evolution and Systematics of Plants in Leipzig. She heads the DFG Research Cluster and is also member of the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig.

Muellner-Riehl and her collaborators found that the link between diversity, speciation and the geological processes was still poorly understood. They identified two main reasons for this: different authors tend to use a different geological framework in their studies, and they apply different analytical approaches and data that are poorly comparable.

The authors show three ways how our understanding of the link between uplift processes of the Qinghai-Tibetan Plateau and the Himalayas and species diversity can be improved:

1) They provide a state-of-the-art scenario how the uplift occurred and how this influenced regional climates over the last 40 million years; this will allow future researchers to formulate clear and comparable hypotheses.

2) They summarize recent analytical developments that allow scientists to make the link between geology and diversification more quantitative and less ad hoc.

3) They propose using meta-analyses of many comparable data sets to help researchers gain a broader understanding of species diversity in the region.

“It is very likely that the uplift of the Qinghai-Tibetan Plateau had different impacts on the evolution of different taxa”, lead author Dr. Adrien Favre, Department of Molecular Evolution and Systematics of Plants, University of Leipzig, Germany, points out. “We wanted to provide details on the criteria that individual data sets should meet to guide future research”, adds co-author Dr. Steffen Pauls, Biodiversity and Climate Research Centre (BiK-F).

This research is presented in the paper “The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas” to appear in Biological Reviews (DOI 10.1111/brv.12107). The scientific article is available online (open access), free of charge: http://onlinelibrary.wiley.com/doi/10.1111/brv.12107/full

The team is composed of Adrien Favre 1,2, Martin Päckert 2,3, Steffen U. Pauls 2, Sonja C. Jähnig 2,4, Dieter Uhl 5, Ingo Michalak 1 and Alexandra N. Muellner-Riehl 1,2,6

1 Department of Molecular Evolution and Systematics of Plants, University of Leipzig, Germany
2 Biodiversity and Climate Research Centre (BiK-F) & Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
3 Senckenberg Natural History Collections, Museum für Tierkunde, Dresden, Germany
4 Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
5 Section of Palaeoclimate and Palaeoenvironmental Research, Senckenberg Research Institute and Natural History Museum, Frankfurt, Germany
6 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena Leipzig, Germany

For more information please contact

Prof. Dr. Alexandra Muellner-Riehl
Department of Molecular Evolution and Systematics of Plants,
Institute of Biology, Leipzig University
Tel. +49-(0)341 97-38581
Muellner-riehl@uni-leipzig.de

or

Dr. Steffen Pauls
LOEWE Biodiversity and Climate Research Centre (BiK-F)
Tel. +49 (0)69 7542 1841
Steffen.pauls@senckenberg.de

or

Sabine Wendler
LOEWE Biodiversity and Climate Research Centre (BiK-F)
Press officer
Tel. +49 (0)69 7542 1838
Sabine.wendler@senckenberg.de

Weitere Informationen:

http://www.bik-f.de/root/index.php?page_id=267&year=0&ID=693
http://- Press release and more press images
http://www.bik-f.de
http://- LOEWE Biodiversity and Climate Research Centre

Sabine Wendler | Senckenberg

Further reports about: BiK-F Biodiversity Climate Department Evolution Leipzig Molecular Plants Plateau Senckenberg analytical diversity species

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>