Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Network to Examine the Power of Aerosols

30.09.2009
They’re tiny, tiny, tiny—no bigger than 2.5 microns or about 20 times smaller than the diameter of an average human hair—and yet they have the potential to change the way clouds form and to affect rain and snowfall patterns. They heat or cool parts of the atmosphere. And they get sucked deep into our lungs.

They’re called aerosols, miniscule particles and droplets that float in the global atmosphere. And they’re the focus of a new national research network that includes Dalhousie University researchers.

The Canadian Aerosol Research Network (CARN) has been started with $15 million in funding from the Canada Foundation for Innovation, governmental agencies and industrial partners. The money will include creating infrastructure for the Atlantic Aerosol Research Centre, to be based at Dalhousie University on the east coast, the University of British Columbia Centre for Aerosol Research on the west coast, and the Southern Ontario Centre for Aerosol Research at the University of Toronto.

“We’re interested in what’s in those particles,” says Judy Guernsey, one of the lead investigators with CARN and associate professor in the Department of Community Health and Epidemiology, Faculty of Medicine. “They could be metal oxides, combustion byproducts, dust, soil, sea salt spray, oil droplets… We’re interested in how they behave in the air, their chemical reactions, and how they behave once we breathe them in.”

Aerosols, both solids and liquids, are generated both naturally and as a result of human activities. Volcanic activity, forest fires, wind blown soil, mold, and marine-derived particles such as sea spray and gaseous emissions from phytoplankton and sea weed are the most common natural sources of aerosols.

Human-produced aerosols come primarily from smoke, such as coal-burning power plants and the internal combustion engines of cars, trucks and ships. Pollutant gases such as volatile organic compounds, oxides of sulfur and nitrogen emitted by fossil fuel combustion react with other gases, such as ammonia from agricultural activity, to generate secondary aerosols and ground-level ozone as a result of complex chemical reactions in the atmosphere.

Because of their small size, aerosols can penetrate the deepest part of the lungs and lead to such health problems as asthma, lung cancer and cardiovascular disease. Indeed, there is strong evidence now that aerosols emitted by vehicles actually exacerbate asthma.

One of the main themes of the Atlantic Aerosol Research Centre and CARN is to disentangle which aerosols are natural and which are the result of human activity. “We want to know how they behave in the atmosphere over time and ultimately how these different aerosols impact health and the environment,” says Mark Gibson, senior research scientist with CARN and an environmental health chemist.

The funding ($4.2 million for Dalhousie) will go to setting up a permanent laboratory for the research within the Faculty of Medicine, acquiring some high-powered equipment that will process air pollution data acquired by satellites, and modeling the spatial variability of air pollution locally, nationally and even globally. A new environmental health faculty member will be recruited to help direct the work of the network. The centre is truly cross-disciplinary, drawing expertise from the Departments of Community Health and Epidemiology, Physics and Atmospheric Science, Chemistry, Oceanography, Civil Engineering and the College of Sustainability.

“It’s very exciting for us—we’ll have the first fully equipped research laboratory dedicated to studying environmental health in Atlantic Canada,” says Dr. Guernsey.

Dr. Guernsey and her colleague Dr. Gibson have laid the groundwork for aerosol research through their work with the Atlantic RURAL Centre. They’re currently engaged in studies for Health Canada examining the residential indoor air quality of 50 Halifax homes, wood smoke exposure in the Annapolis Valley and “fugitive dust,” airborne particles from contaminated sites such as former gold mines.

“Once the lab is set up, there will be spin offs. We’ll be able to look at any toxic agent(s) found in water, food, soil or the air,” says Dr. Gibson.

“And not just here in Atlantic Canada,” adds Dr. Guernsey. “One of our colleagues is now examining personal exposure to poor air quality in rural Kenya and we are planning similar research in India.”

Charles Crosby | Newswise Science News
Further information:
http://www.dal.ca

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>