Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA watches Tropical Storm Florence develop and weaken

The sixth tropical storm of the Atlantic Ocean hurricane season formed over the past weekend, and NASA kept an on its progression. Tropical Storm Florence was born in the eastern Atlantic and weakened when it interacted with dry air.

On Friday, August 3, the low pressure area known as "System 90L" was being watched for development. It was located south of the Cape Verde Islands off the African coast. By the early evening (Eastern Daylight Time) it quickly organized. System 90L strengthened and became Tropical Storm Florence in the eastern Atlantic. Over August 4 and 5 Florence traveled west and weakened back to a tropical depression by August 6.

The AIRS instrument that flies on NASA's Aqua satellite captured these infrared images of Florence on Aug. 4-5. The AIRS image from Aug. 4 showed a larger spiraled storm. By Aug. 5 when dry air started interacting with the system the area of stronger thunderstorms had diminished and the storm had a tight, small area of strong, high, cold cloud tops of thunderstorms around the center of circulation.

Credit: NASA/JPL, Ed Olsen

NASA's Aqua satellite passed over Tropical Storm Florence on August 4 and 5. The Atmospheric Infrared Sounder (AIRS) instrument onboard the satellite captured infrared images of the storm on both days. The AIRS image from Aug. 4 showed a larger spiraled storm. By Aug. 5 when dry air started interacting with the system the area of stronger thunderstorms had diminished and the storm had a tight, small area of strong, high, cold cloud tops of thunderstorms around the center of circulation.

On August 6 at 0900 UTC (5 a.m. EDT), Florence's maximum sustained winds were near 35 mph (55 kmh) with higher gusts. At 5 a.m. EDT the center of tropical depression Florence was located near latitude 16.2 north and longitude 38.8 west. Florence is moving toward the west near 12 mph (19 kmh). The depression is expect to move in a westward or west-northwestward motion and speed up over the next couple of days.

After Florence became a tropical storm she ran into dry air and Saharan dust, according to the National Hurricane Center (NHC). At 5 a.m. EDT on Monday, August 6, the NHC noted "the cyclone has been devoid of deep convection for about six hours as dry air has become well embedded in the circulation."

Forecasters at the National Hurricane Center expect Florence to track west across the Atlantic and south of Bermuda. On her western track, Florence is expected to degenerate to a remnant low within the next couple of days, because wind shear will increase from the west and batter the storm. Florence became a post-tropical storm on August 6 at 11 a.m. EDT as its winds dropped to 35 mph (55 kmh). It was located near latitude 16.4 north and longitude 40.2 west. Florence is expected to weaken further over the next couple of days.

Rob Gutro | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>