Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA watches Tropical Storm Florence develop and weaken

07.08.2012
The sixth tropical storm of the Atlantic Ocean hurricane season formed over the past weekend, and NASA kept an on its progression. Tropical Storm Florence was born in the eastern Atlantic and weakened when it interacted with dry air.

On Friday, August 3, the low pressure area known as "System 90L" was being watched for development. It was located south of the Cape Verde Islands off the African coast. By the early evening (Eastern Daylight Time) it quickly organized. System 90L strengthened and became Tropical Storm Florence in the eastern Atlantic. Over August 4 and 5 Florence traveled west and weakened back to a tropical depression by August 6.


The AIRS instrument that flies on NASA's Aqua satellite captured these infrared images of Florence on Aug. 4-5. The AIRS image from Aug. 4 showed a larger spiraled storm. By Aug. 5 when dry air started interacting with the system the area of stronger thunderstorms had diminished and the storm had a tight, small area of strong, high, cold cloud tops of thunderstorms around the center of circulation.

Credit: NASA/JPL, Ed Olsen

NASA's Aqua satellite passed over Tropical Storm Florence on August 4 and 5. The Atmospheric Infrared Sounder (AIRS) instrument onboard the satellite captured infrared images of the storm on both days. The AIRS image from Aug. 4 showed a larger spiraled storm. By Aug. 5 when dry air started interacting with the system the area of stronger thunderstorms had diminished and the storm had a tight, small area of strong, high, cold cloud tops of thunderstorms around the center of circulation.

On August 6 at 0900 UTC (5 a.m. EDT), Florence's maximum sustained winds were near 35 mph (55 kmh) with higher gusts. At 5 a.m. EDT the center of tropical depression Florence was located near latitude 16.2 north and longitude 38.8 west. Florence is moving toward the west near 12 mph (19 kmh). The depression is expect to move in a westward or west-northwestward motion and speed up over the next couple of days.

After Florence became a tropical storm she ran into dry air and Saharan dust, according to the National Hurricane Center (NHC). At 5 a.m. EDT on Monday, August 6, the NHC noted "the cyclone has been devoid of deep convection for about six hours as dry air has become well embedded in the circulation."

Forecasters at the National Hurricane Center expect Florence to track west across the Atlantic and south of Bermuda. On her western track, Florence is expected to degenerate to a remnant low within the next couple of days, because wind shear will increase from the west and batter the storm. Florence became a post-tropical storm on August 6 at 11 a.m. EDT as its winds dropped to 35 mph (55 kmh). It was located near latitude 16.4 north and longitude 40.2 west. Florence is expected to weaken further over the next couple of days.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>