Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA sees powerful Typhoon Sanba make landfall

18.09.2012
Typhoon Sanba made landfall in southern South Korea on Monday, Sept. 17 and was moving northeast bringing heavy rainfall, and gusty winds along its path.

Sanba downed trees, and caused power outages, canceled flights and canceled ferries. NASA's Aqua satellite captured a visible image of Sanba on Sept. 17 after it made landfall and observed the large extent of its cloud cover from South Korea to eastern Siberia.


NASA's Aqua satellite passed over Tropical Storm Sanba on Sept. 17 at 0430 UTC and the MODIS instrument captured this visible image of the storm when it was over South and North Korea. Some of Sanba's clouds extended north over eastern Siberia.

Credit: NASA Goddard MODIS Rapid Response Team

NASA's Aqua satellite passed over Tropical Storm Sanba on Sept. 17 at 0430 UTC (12:30 a.m. EDT/1:30 p.m. local time Seoul, South Korea) and the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument captured this visible image of the storm when it was over South and North Korea. The image revealed that some of Sanba's clouds extended north over northeastern North Korea and eastern Siberia.

According to the Associated Press, Sanba caused about 67,000 homes to lose power in southern Japan, and over 26,000 outages in South Korea. At least one death was reported.

At 0900 UTC (5 a.m. EDT) on Sept. 17, Sanba had maximum sustained winds near 45 knots (52 mph/83 kmh). It was located about 10 nautical miles northwest of Taegu, South Korea, near 37.2 North and 128.9 East. Since making landfall earlier in the day the storm has sped up and is moving to the north-northeast at 20 knots (23 mph/37 kmh). Surface observations from Taegu at that time indicated maximum sustained winds near 24 knots (27.6 mph/44.4 kmh) with gusts to 40 knots (46 mph/74 kmh).

Sanba is expected to experience some big changes over the next day. It is tracking over the rough terrain of the Taebaek Mountain range and is transitioning into an extra-tropical storm. That means that the core of the system will change from warm to cold.

The Joint Typhoon Warning Center expects Sanba to become a cold core low after its remnants emerge back in the Sea of Japan later today, Sept. 17, if it doesn't dissipate over land.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>