Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Sees Active Tropical Eastern Pacific Ocean

05.08.2013
The Eastern Pacific Ocean has kicked into high gear on Aug. 2 and NOAA's GOES-15 satellite is watching Hurricane Gil and two developing tropical low pressure areas on both sides of Gil.

NOAA's GOES-15 satellite captured a very active Eastern Pacific ocean on Aug. 2 at 0900 UTC (5 a.m. EDT) with one hurricane and two developing tropical low pressure areas. System 91E is farthest west and approaching the Central Pacific, while Hurricane Gil and System 90E trail behind to the east. The GOES-15 infrared image was created at NASA's GOES Project at the NASA Goddard Space Flight Center, Greenbelt, Md.


NOAA's GOES-15 satellite captured a very active Eastern Pacific ocean on Aug. 2 at 0900 UTC (5 a.m. EDT) with one hurricane and two developing tropical low pressure areas.
Image Credit: NASA GOES Project

System 91E Headed into Central Pacific Ocean

The low pressure area called "System 91E" has developed about 1,260 miles east-southeast of Hilo, Hawaii. The National Hurricane Center in Miami, Fla. and the Central Pacific Hurricane Center or CPHC in Honolulu, Hawaii are monitoring System 91E and expect any development to be slow. Because System 91E is moving into the Central Pacific Ocean it will soon become the responsibility of the CPHC. Currently, System 91E has a low chance of becoming a tropical cyclone during the next 48 hours.

Hurricane Gil Sandwiched

Hurricane Gil is sandwiched between two low pressure areas: System 91E to the west and System 90E to Gil's east. Gil appears to be inhibiting System 90E's development, but that may change if Gil weakens or moves farther away from the low.

At 5 p.m. EDT on Aug. 2, Gil's maximum sustained winds were near 85 mph/140 kph. The National Hurricane Center expects little change in strength during the next two days.

Gil was centered near 14.6 north latitude and 127.3 west longitude, about 1,275 miles/2,050 km west-southeast of the southern tip of Baja California, Mexico. Gil is moving west at 13 mph/20 kph and this motion is expected to continue with some decrease in forward speed during the next two days. The estimated minimum central pressure is 985 millibars.

In the GOES-15 satellite imagery Gil appears less organized and the area of strongest convection (rising air that forms the thunderstorms that make up the tropical cyclone) has been shrinking. Precipitable water imagery shows that drier air is wrapping into the eastern side of the storm and is likely the cause of the diminished organization.

Over the weekend of Aug. 3 and 4, the NHC expects slow weakening when Gil moves over progressively cooler water and into an environment of slightly stronger wind shear.

System 90E Being Affected by Hurricane Gil

Low pressure area called "System 90E" is still chasing Hurricane Gil. Located east of Gil, it is located about 900 miles southwest of the southern tip of the Baja California Peninsula of Mexico. Gil is moving westward at about 10 to 15 mph.

System 90E is producing disorganized thunderstorms, but NHC noted that if Hurricane Gil weakens, System 90E get a chance to develop. Gil's close proximity to System 90E is adversely affecting the storm's ability to organize. System 90E was given a 30 percent or medium chance of becoming a tropical cyclone over the next two days, and a higher chance over the next 5 days.

Rob Gutro
NASA's Goddard Space Flight Center, Greenbelt, Md.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/content/goddard/hurricane-gil/#.UfvM-3eAHhc

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>