Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA Sees Active Tropical Eastern Pacific Ocean

The Eastern Pacific Ocean has kicked into high gear on Aug. 2 and NOAA's GOES-15 satellite is watching Hurricane Gil and two developing tropical low pressure areas on both sides of Gil.

NOAA's GOES-15 satellite captured a very active Eastern Pacific ocean on Aug. 2 at 0900 UTC (5 a.m. EDT) with one hurricane and two developing tropical low pressure areas. System 91E is farthest west and approaching the Central Pacific, while Hurricane Gil and System 90E trail behind to the east. The GOES-15 infrared image was created at NASA's GOES Project at the NASA Goddard Space Flight Center, Greenbelt, Md.

NOAA's GOES-15 satellite captured a very active Eastern Pacific ocean on Aug. 2 at 0900 UTC (5 a.m. EDT) with one hurricane and two developing tropical low pressure areas.
Image Credit: NASA GOES Project

System 91E Headed into Central Pacific Ocean

The low pressure area called "System 91E" has developed about 1,260 miles east-southeast of Hilo, Hawaii. The National Hurricane Center in Miami, Fla. and the Central Pacific Hurricane Center or CPHC in Honolulu, Hawaii are monitoring System 91E and expect any development to be slow. Because System 91E is moving into the Central Pacific Ocean it will soon become the responsibility of the CPHC. Currently, System 91E has a low chance of becoming a tropical cyclone during the next 48 hours.

Hurricane Gil Sandwiched

Hurricane Gil is sandwiched between two low pressure areas: System 91E to the west and System 90E to Gil's east. Gil appears to be inhibiting System 90E's development, but that may change if Gil weakens or moves farther away from the low.

At 5 p.m. EDT on Aug. 2, Gil's maximum sustained winds were near 85 mph/140 kph. The National Hurricane Center expects little change in strength during the next two days.

Gil was centered near 14.6 north latitude and 127.3 west longitude, about 1,275 miles/2,050 km west-southeast of the southern tip of Baja California, Mexico. Gil is moving west at 13 mph/20 kph and this motion is expected to continue with some decrease in forward speed during the next two days. The estimated minimum central pressure is 985 millibars.

In the GOES-15 satellite imagery Gil appears less organized and the area of strongest convection (rising air that forms the thunderstorms that make up the tropical cyclone) has been shrinking. Precipitable water imagery shows that drier air is wrapping into the eastern side of the storm and is likely the cause of the diminished organization.

Over the weekend of Aug. 3 and 4, the NHC expects slow weakening when Gil moves over progressively cooler water and into an environment of slightly stronger wind shear.

System 90E Being Affected by Hurricane Gil

Low pressure area called "System 90E" is still chasing Hurricane Gil. Located east of Gil, it is located about 900 miles southwest of the southern tip of the Baja California Peninsula of Mexico. Gil is moving westward at about 10 to 15 mph.

System 90E is producing disorganized thunderstorms, but NHC noted that if Hurricane Gil weakens, System 90E get a chance to develop. Gil's close proximity to System 90E is adversely affecting the storm's ability to organize. System 90E was given a 30 percent or medium chance of becoming a tropical cyclone over the next two days, and a higher chance over the next 5 days.

Rob Gutro
NASA's Goddard Space Flight Center, Greenbelt, Md.

Rob Gutro | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Jacobs University supports new mapping of Mars, Mercury and the Moon
21.03.2018 | Jacobs University Bremen gGmbH

nachricht Thawing permafrost produces more methane than expected
20.03.2018 | GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>