Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA sees a Tropical Storm Haliba 'sandwich'

11.03.2015

Tropical Storm Haliba appeared to be the "filling" in a sandwich between the Southern Indian Ocean islands of La Reunion and Mauritius in NASA satellite imagery because wind shear pushed the bulk of the storm's clouds between the islands.

NASA and the Japan Aerospace Exploration Agency's Tropical Rainfall Measuring Mission or TRMM satellite passed above Tropical Storm Haliba on March 9 when its center was just west of La Reunion Island at 1035 UTC (6:25 a.m. EDT).


RapidScat measurements between March 9 from 22:17 to 23:49 UTC revealed Haliba's sustained winds dropped to 34 mph/55 kph) near the center and southern quadrant of the storm.

Image Credit: NASA JPL, Doug Tyler

The bulk of precipitation appeared east of the center of Haliba's circulation making it appears as if the storm was between Reunion and Mauritius (which is northeast of Reunion). Westerly vertical wind shear was pushing the clouds and showers east of the center.

TRMM's Precipitation Radar (PR) instrument indicated that the heaviest rainfall of over 181 mm (7.1 inches) per hour was located in an intense rain band located northeast of Reunion Island.

TRMM's Precipitation Radar (PR) data showed the most powerful storms in this band of thunderstorms were reaching heights above 16.8 km (10.4 miles). Radar reflectivity values of 55.5 dBZ returned from heavy rainfall in that area are another proof of rainfall intensity in that area.

The International Space Station's RapidScat instrument captured a look at Tropical Cyclone Haliba's surface winds. RapidScat measured the winds later on March 9 from 22:17 to 23:49 UTC. By that time, Haliba had weakened.

Measurements revealed that sustained winds at the surface were as high as 15 meters per second (34 mph/55 kph) near the center and southern quadrant of the storm, indicating that the storm had dropped below tropical storm status and weakened to a depression.

By 0900 UTC on March 10, Tropical Cyclone Haliba's maximum sustained winds remained near 30 knots (34 mph/55 kph). It was centered near 23.7 south latitude and 55.3 east longitude, about 192 nautical miles (221 miles/356 km) south of St. Denis, La Reunion.

Tropical Depression Haliba was moving to the south-southwest at 8 knots (9.2 mph/14.8 kph).

The westerly vertical wind shear that affected Haliba on March 9 continued on March 10 and weakened the storm to a depression. The Joint Typhoon Warning Center expects the storm to maintain its strength over the next day until it dissipates.

Rob Gutro | EurekAlert!

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>