Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA sees a Tropical Storm Haliba 'sandwich'

11.03.2015

Tropical Storm Haliba appeared to be the "filling" in a sandwich between the Southern Indian Ocean islands of La Reunion and Mauritius in NASA satellite imagery because wind shear pushed the bulk of the storm's clouds between the islands.

NASA and the Japan Aerospace Exploration Agency's Tropical Rainfall Measuring Mission or TRMM satellite passed above Tropical Storm Haliba on March 9 when its center was just west of La Reunion Island at 1035 UTC (6:25 a.m. EDT).


RapidScat measurements between March 9 from 22:17 to 23:49 UTC revealed Haliba's sustained winds dropped to 34 mph/55 kph) near the center and southern quadrant of the storm.

Image Credit: NASA JPL, Doug Tyler

The bulk of precipitation appeared east of the center of Haliba's circulation making it appears as if the storm was between Reunion and Mauritius (which is northeast of Reunion). Westerly vertical wind shear was pushing the clouds and showers east of the center.

TRMM's Precipitation Radar (PR) instrument indicated that the heaviest rainfall of over 181 mm (7.1 inches) per hour was located in an intense rain band located northeast of Reunion Island.

TRMM's Precipitation Radar (PR) data showed the most powerful storms in this band of thunderstorms were reaching heights above 16.8 km (10.4 miles). Radar reflectivity values of 55.5 dBZ returned from heavy rainfall in that area are another proof of rainfall intensity in that area.

The International Space Station's RapidScat instrument captured a look at Tropical Cyclone Haliba's surface winds. RapidScat measured the winds later on March 9 from 22:17 to 23:49 UTC. By that time, Haliba had weakened.

Measurements revealed that sustained winds at the surface were as high as 15 meters per second (34 mph/55 kph) near the center and southern quadrant of the storm, indicating that the storm had dropped below tropical storm status and weakened to a depression.

By 0900 UTC on March 10, Tropical Cyclone Haliba's maximum sustained winds remained near 30 knots (34 mph/55 kph). It was centered near 23.7 south latitude and 55.3 east longitude, about 192 nautical miles (221 miles/356 km) south of St. Denis, La Reunion.

Tropical Depression Haliba was moving to the south-southwest at 8 knots (9.2 mph/14.8 kph).

The westerly vertical wind shear that affected Haliba on March 9 continued on March 10 and weakened the storm to a depression. The Joint Typhoon Warning Center expects the storm to maintain its strength over the next day until it dissipates.

Rob Gutro | EurekAlert!

More articles from Earth Sciences:

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

nachricht New research unlocks forests' potential in climate change mitigation
21.04.2017 | Clemson University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>