Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA satellites see strong thunderstorms surround Typhoon Soulik's center

10.07.2013
Visible and infrared satellite data show strong thunderstorms surrounding the low-level center of the tropical storm turned Typhoon Soulik. NASA's Aqua satellite passed over Typhoon Soulik in the Northwestern Pacific Ocean on July 9 and two instruments showed the power in the typhoon's center.

The Moderate Resolution Imaging Spectroradiometer or MODIS instrument that flies aboard NASA's Aqua satellite captured a visible image of Soulik on July 9 at 1:25 UTC (July 8 at 9:25 p.m. EDT). The image shows a tight concentration of thunderstorms around the typhoon's center and feeder bands of thunderstorms wrapping into the center from the northeast and southwest.


This visible image from July 9 at 1:25 UTC was taken by the MODIS instrument that flies aboard NASA's Aqua satellite shows strong thunderstorms around Tropical Storm Soulik's center.

Credit: NASA Goddard MODIS Rapid Response Team

An infrared image captured on July 9 at 4:29 UTC (12:29 a.m. EDT) captured the cloud top temperatures of the eastern two-thirds of the typhoon. The infrared data, captured by the Atmospheric Infrared Sounder or AIRS instrument showed that same tight concentration of storms around the center with cloud top temperatures colder than -63F/-52C. That means the thunderstorm cloud tops are high into the troposphere and are likely dropping heavy rainfall. Infrared data shows that Soulik's eye is about 30 nautical miles (34.5 miles/55.5 km) in diameter.

Soulik is also a large typhoon. The AIRS data showed that the storm spans from about 15 degrees north latitude to 23 degrees north latitude. Tropical-storm-force winds extend out 140 miles from the center (or 280 miles in diameter). The typhoon-force winds extend out nautical 40 miles (46 miles/74 km) from the center, or about 80 nautical miles (92 miles/148 km) in diameter.

According to the Joint Typhoon Warning Center, on July 9 at 1500 UTC (11 a.m. EDT), Typhoon Soulik had maximum sustained winds near 95 knots (109 mph/176 kph) and is still strengthening.

Soulik's center was located near 20.3 north latitude and 138.1 east longitude, about 678 nautical miles (780 miles/1,256 km) east-southeast of Kadena Air Base, Japan. Soulik is moving to the west-southwest at 12 knots (13.8 mph/22.2 kph) and generating very rough seas with wave heights to 32 feet (9.7 meters).

Soulik is intensifying as it moves west across the open Pacific and is expected to make a landfall in southeastern China sometime over the weekend of July 13 and 14.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>