Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two NASA Satellites Capture Monster Super Typhoon Melor

06.10.2009
NASA's Terra and Aqua satellites flew over Super Typhoon Melor early today, October 5 and captured some impressive images of the storm's clouds on a track toward Japan. The Western Pacific Ocean has the edge on super typhoons, and Melor's maximum sustained winds near 161 mph are more proof.

Typhoon Melor tracked through the channel between Saipan and Agrihan on Saturday night, and became a Super Typhoon on Sunday. Melor's winds dropped to 130 mph just before it passed near the island of Saipan this weekend and it was far enough away to not cause any major damage, according to local news reports. Downed trees and heavy rain were experienced Saturday afternoon and overnight into Sunday (local time), but no major flooding was reported.

On October 5 at 5 a.m. EDT (0900 UTC), Super Typhoon Melor's winds were up to 161 mph, and it was located approximately 585 nautical miles southeast of Okinawa, near 19.6 North and 134.3 East. Melor is moving west-northwestward at 19 mph.

NASA's Terra satellite flew over Melor during the early morning hours on October 5. The Moderate Imaging Spectroradiometer (MODIS) instrument on Terra provided a dramatic image of Melor at Category 5 strength on the Saffir-Simpson scale with maximum sustained winds near 161 mph!

NASA's Aqua satellite flew over Super Typhoon Melor mid-day on October 4 and captured an infrared image of the monster typhoon. Aqua's Atmospheric Infrared Sounder (AIRS) instrument and Moderate Imaging Spectroradiometer (MODIS) analyzed temperatures in Melor's clouds. AIRS revealed the cold high thunderstorm cloud temperatures were colder than minus 63 Fahrenheit indicating a very strong tropical cyclone.

Forecasters at the U.S. Navy's Joint Typhoon Warning Center have amended the forecast track for Melor, and take the super typhoon on a path resembling the letter "C" in the Western Pacific Ocean. The storm is forecast to swing just east of Kadena island Japan, then turn northeast (because westerly winds will push it northeast) and its center is now expected to brush Tokyo before it swings northeast back into the open Western Pacific.

There's good news about the storm's strength however. Melor will slowly weaken as a because of increased vertical wind shear (winds blowing sometimes at different directions, at different levels of the atmosphere that can tear a storm apart) and cooler waters. When Melor is south of Tokyo, it's expected to interact with a baroclinic boundary (i.e. a front) and become extratropical.

Text credit: Rob Gutro, NASA/Goddard Space Flight Center

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2009/h2009_Melor.html

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>