Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA satellites analyze Typhoon Soudelor moving toward Taiwan

06.08.2015

Heavy rain, towering thunderstorms, and a large area are things that NASA satellites observed as Typhoon Soudelor moves toward Taiwan on August 5, 2015.

NASA's Terra satellite passed over Soudelor on August 5, 2015 at 01:45 UTC and the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument captured a visible image of the large storm in the Philippine Sea. The eye appeared to be cloud-filled as bands of thunderstorms spiraled into the center of the storm.


On Aug. 5, the GPM satellite data was used to make a 3-D vertical structure of rainfall within Soudelor. Some storms examined with GPM's radar reached heights of over 12.9 km (about 8 miles) and were dropping rain at a rate of over 87 mm (3.4 inches).

Credits: NASA/JAXA/SSAI, Hal Pierce

The Global Precipitation Measurement (GPM) mission core observatory, a satellite managed by both NASA and the Japan Aerospace Exploration Agency, took a look at rainfall and cloud heights.

Typhoon Soudelor's sustained winds were 105 knots (about 121 mph) when the GPM core observatory satellite flew above on August 5, 2015 at 1051 UTC. At NASA's Goddard Space Flight Center in Greenbelt, Maryland, a rainfall analysis was made from data collected from GPM's Microwave Imager (GMI) and Dual-Frequency Precipitation Radar (DPR) instruments. The analysis showed that Soudelor was very large and had a well-defined eye. Intense feeder bands are shown spiraling into the center.

Three dimensional radar reflectivity data from GPM's DPR (ku Band) were used to construct a simulated cross section through Typhoon Soudelor's center.

A view from the south showed the 3-D vertical structure of rainfall within Soudelor. Some storms examined with GPM's radar reached heights of over 12.9 km (about 8 miles) and were dropping rain at a rate of over 87 mm (3.4 inches).

On August 5, 2015 at 1500 UTC (11 a.m. EDT), Soudelor was centered near 20.0 North latitude and 132.7 East longitude, about 474 nautical miles (545.5 miles/ 877.8 km) southeast of Kadena Air Base, Okinawa, Japan. It was moving to the west at 10 knots (11.5 mph/18.5 kph). Maximum sustained winds were near 100 knots (115 mph/185 kph).

The Joint Typhoon Warning Center (JTWC) predicts that typhoon Soudelor will continue to be a powerful typhoon and winds are predicted to increase to 120 knots (138 mph) before impacting Taiwan in a couple days. Taiwan's rugged terrain is expected to take its toll on Soudelor but the typhoon is still expected to have wind speeds of 90 knots (103.5 mph) while approaching China.

Rob Gutro | EurekAlert!

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>