Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA mission sending unmanned aircraft over hurricanes this year

04.06.2012
Beginning this summer and over the next several years, NASA will be sending unmanned aircraft dubbed "severe storm sentinels" above stormy skies to help researchers and forecasters uncover information about hurricane formation and intensity changes.

Several NASA centers are joining federal and university partners in the Hurricane and Severe Storm Sentinel (HS3) airborne mission targeted to investigate the processes that underlie hurricane formation and intensity change in the Atlantic Ocean basin.


The mission logo for the Hurricane and Severe Storm Sentinel (HS3) airborne mission. HS3 will investigate the processes that underlie hurricane formation and intensity change in the Atlantic Ocean basin. Credit: NASA

NASA's unmanned sentinels are autonomously flown. The NASA Global Hawk is well-suited for hurricane investigations because it can over-fly hurricanes at altitudes greater than 60,000 feet with flight durations of up to 28 hours - something piloted aircraft would find nearly impossible to do. Global Hawks were used in the agency's 2010 Genesis and Rapid Intensification Processes (GRIP) hurricane mission and the Global Hawk Pacific (GloPac) environmental science mission.

"Hurricane intensity can be very hard to predict because of an insufficient understanding of how clouds and wind patterns within a storm interact with the storm's environment. HS3 seeks to improve our understanding of these processes by taking advantage of the surveillance capabilities of the Global Hawk along with measurements from a suite of advanced instruments," said Scott Braun, HS3 mission principal investigator and research meteorologist at NASA's Goddard Space Flight Center in Greenbelt, Md.

HS3 will use two Global Hawk aircraft and six different instruments this summer, flying from a base of operations at Wallops Flight Facility in Virginia.

"One aircraft will sample the environment of storms while the other will measure eyewall and rainband winds and precipitation," Braun said. HS3 will examine the large-scale environment that tropical storms form in and move through and how that environment affects the inner workings of the storms.

HS3 will address the controversial role of the hot, dry, and dusty Saharan Air Layer in tropical storm formation and intensification. Past studies have suggested that the Saharan Air Layer can both favor or suppress intensification. In addition, HS3 will examine the extent to which deep convection in the inner-core region of storms is a key driver of intensity change or just a response to storms finding favorable sources of energy.

The HS3 mission will operate during portions of the Atlantic hurricane seasons, which run from June 1 to November 30. The 2012 mission will run from late August through early October.

The instruments to be mounted in the Global Hawk aircraft that will examine the environment of the storms include the scanning High-resolution Interferometer Sounder (S-HIS), the Advanced Vertical Atmospheric Profiling System (AVAPS) also known as dropsondes, and the Cloud Physics Lidar (CPL). The Tropospheric Wind Lidar Technology Experiment (TWiLiTE) Doppler wind lidar will likely fly in the 2013 mission.

Another set of instruments will fly on the Global Hawk focusing on the inner region of the storms. Those instruments include the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) conically scanning Doppler radar, the Hurricane Imaging Radiometer (HIRAD) multi-frequency interferometric radiometer, and the High-Altitude Monolithic Microwave Integrated Circuit Sounding Radiometer (HAMSR) microwave sounder. Most of these instruments represent advanced technology developed by NASA, that in some cases are precursors to future satellite sensors.

NASA's Science Mission Directorate Global Hawk aircraft will deploy to Wallops Flight Facility from their home base at NASA's Dryden Flight Research Center on Edwards Air Force Base, Calif.

"HS3 marks the first time that NASA's Global Hawks will deploy away from Dryden for a mission, potentially marking the beginning of an era in which they are operated regularly from Wallops," said Paul Newman, atmospheric scientist at NASA Goddard and deputy principal investigator on the HS3 mission.

NASA's Science Mission Directorate in Washington is establishing a Global Hawk operations center for science operations from Wallops.. "With the Global Hawks at NASA Dryden in California, NASA Wallops will become the 'Global Hawk - Eastern' science center," Newman said.

From rockets studying the upper atmosphere to unmanned aircraft flying over hurricanes, NASA's Wallops Flight Facility is fast becoming a busy place for science. Wallops is one of several NASA centers involved with the HS3 mission. Others include Goddard, Dryden, Ames Research Center, Marshall Space Flight Center, and the Jet Propulsion Laboratory.

The HS3 mission is funded by NASA Headquarters and managed by NASA's Earth System Science Pathfinder Program at NASA's Langley Research Center, Hampton, Va. The HS3 mission also involves collaborations with various partners including the National Centers for Environmental Prediction, Naval Postgraduate School, Naval Research Laboratory, NOAA's Hurricane Research Division and Earth System Research Laboratory, Northrop Grumman Space Technology, National Center for Atmospheric Research, State University of New York at Albany, University of Maryland - Baltimore County, University of Wisconsin, and University of Utah.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>