Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA mission sending unmanned aircraft over hurricanes this year

04.06.2012
Beginning this summer and over the next several years, NASA will be sending unmanned aircraft dubbed "severe storm sentinels" above stormy skies to help researchers and forecasters uncover information about hurricane formation and intensity changes.

Several NASA centers are joining federal and university partners in the Hurricane and Severe Storm Sentinel (HS3) airborne mission targeted to investigate the processes that underlie hurricane formation and intensity change in the Atlantic Ocean basin.


The mission logo for the Hurricane and Severe Storm Sentinel (HS3) airborne mission. HS3 will investigate the processes that underlie hurricane formation and intensity change in the Atlantic Ocean basin. Credit: NASA

NASA's unmanned sentinels are autonomously flown. The NASA Global Hawk is well-suited for hurricane investigations because it can over-fly hurricanes at altitudes greater than 60,000 feet with flight durations of up to 28 hours - something piloted aircraft would find nearly impossible to do. Global Hawks were used in the agency's 2010 Genesis and Rapid Intensification Processes (GRIP) hurricane mission and the Global Hawk Pacific (GloPac) environmental science mission.

"Hurricane intensity can be very hard to predict because of an insufficient understanding of how clouds and wind patterns within a storm interact with the storm's environment. HS3 seeks to improve our understanding of these processes by taking advantage of the surveillance capabilities of the Global Hawk along with measurements from a suite of advanced instruments," said Scott Braun, HS3 mission principal investigator and research meteorologist at NASA's Goddard Space Flight Center in Greenbelt, Md.

HS3 will use two Global Hawk aircraft and six different instruments this summer, flying from a base of operations at Wallops Flight Facility in Virginia.

"One aircraft will sample the environment of storms while the other will measure eyewall and rainband winds and precipitation," Braun said. HS3 will examine the large-scale environment that tropical storms form in and move through and how that environment affects the inner workings of the storms.

HS3 will address the controversial role of the hot, dry, and dusty Saharan Air Layer in tropical storm formation and intensification. Past studies have suggested that the Saharan Air Layer can both favor or suppress intensification. In addition, HS3 will examine the extent to which deep convection in the inner-core region of storms is a key driver of intensity change or just a response to storms finding favorable sources of energy.

The HS3 mission will operate during portions of the Atlantic hurricane seasons, which run from June 1 to November 30. The 2012 mission will run from late August through early October.

The instruments to be mounted in the Global Hawk aircraft that will examine the environment of the storms include the scanning High-resolution Interferometer Sounder (S-HIS), the Advanced Vertical Atmospheric Profiling System (AVAPS) also known as dropsondes, and the Cloud Physics Lidar (CPL). The Tropospheric Wind Lidar Technology Experiment (TWiLiTE) Doppler wind lidar will likely fly in the 2013 mission.

Another set of instruments will fly on the Global Hawk focusing on the inner region of the storms. Those instruments include the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) conically scanning Doppler radar, the Hurricane Imaging Radiometer (HIRAD) multi-frequency interferometric radiometer, and the High-Altitude Monolithic Microwave Integrated Circuit Sounding Radiometer (HAMSR) microwave sounder. Most of these instruments represent advanced technology developed by NASA, that in some cases are precursors to future satellite sensors.

NASA's Science Mission Directorate Global Hawk aircraft will deploy to Wallops Flight Facility from their home base at NASA's Dryden Flight Research Center on Edwards Air Force Base, Calif.

"HS3 marks the first time that NASA's Global Hawks will deploy away from Dryden for a mission, potentially marking the beginning of an era in which they are operated regularly from Wallops," said Paul Newman, atmospheric scientist at NASA Goddard and deputy principal investigator on the HS3 mission.

NASA's Science Mission Directorate in Washington is establishing a Global Hawk operations center for science operations from Wallops.. "With the Global Hawks at NASA Dryden in California, NASA Wallops will become the 'Global Hawk - Eastern' science center," Newman said.

From rockets studying the upper atmosphere to unmanned aircraft flying over hurricanes, NASA's Wallops Flight Facility is fast becoming a busy place for science. Wallops is one of several NASA centers involved with the HS3 mission. Others include Goddard, Dryden, Ames Research Center, Marshall Space Flight Center, and the Jet Propulsion Laboratory.

The HS3 mission is funded by NASA Headquarters and managed by NASA's Earth System Science Pathfinder Program at NASA's Langley Research Center, Hampton, Va. The HS3 mission also involves collaborations with various partners including the National Centers for Environmental Prediction, Naval Postgraduate School, Naval Research Laboratory, NOAA's Hurricane Research Division and Earth System Research Laboratory, Northrop Grumman Space Technology, National Center for Atmospheric Research, State University of New York at Albany, University of Maryland - Baltimore County, University of Wisconsin, and University of Utah.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

Melting solid below the freezing point

23.01.2017 | Materials Sciences

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>