Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA-JAXA's New Precipitation Satellite Sees First Atlantic Hurricane

09.07.2014

The Global Precipitation Measurement (GPM) Core Observatory flew over Hurricane Arthur five times between July 1 and July 5, 2014. Arthur is the first tropical cyclone of the 2014 Atlantic hurricane season.


Animation of NASA-JAXA's GPM satellite data of rain rates and internal structure of Hurricane Arthur on July 3 2014.

Image Credit: NASA's Scientific Visualization Studio/JAXA

GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency. The Core Observatory was launched Feb. 27 from Japan and began its prime mission on May 29, just in time for the hurricane season.

The five GPM passes over Arthur are the first time a precipitation-measuring satellite has been able to follow a hurricane through its full life cycle with high-resolution measurements of rain and ice. In the July 3 image, Arthur was just off the coast of South Carolina. GPM data showed that the hurricane was asymmetrical, with spiral arms, called rain bands, on the eastern side of the storm but not on the western side.

Arthur was born as the first 2014 Atlantic tropical depression on June 30. It strengthened into a tropical storm on July 1 and reached maximum intensity as a Category 2 hurricane on July 4. The storm moved up the U.S. East Coast and made landfall on July 3 at 11:15 p.m. EDT over the Shackleford Banks between Cape Lookout and Beaufort, North Carolina, before swinging northeast over the ocean toward Greenland, where it became an extra-tropical storm on July 5.

“With these new observations we are able to see fine scale structures of precipitation to about 1,000 feet vertically and 3 miles horizontally. This allows us to measure precipitation regionally and to improve weather forecasting models,” said Gail Skofronick-Jackson, GPM project scientist at NASA's Goddard Space Flight Center in Greenbelt Maryland.

The GPM Core Observatory’s observations of storms like Arthur will also help scientists decipher some of the thorniest questions about hurricanes, such as how and why they intensify. Hurricane intensity is one of the most difficult aspects to predict and is an area of active research that GPM's observations will contribute to, said NASA Goddard hurricane researcher Scott Braun.

The spacecraft carries two instruments that show the location and intensity of the rain, which defines a crucial part of the storm structure. The GPM Microwave Imager sees through the tops of clouds to observe how much and where precipitation occurs, and the Dual-frequency Precipitation Radar observes precise details of precipitation in three dimensions.

With the added capability and higher resolution on the new instruments, "hurricane features pop out more. They're sharper, there's more clarity to the structures," said Braun. "Being able to see the structures more clearly may allow for better determination of the structure of the eye wall and rainbands, thereby providing clues about the likelihood of a storm intensifying or weakening.”

For forecasters, GPM's radiometer and radar data are part of the toolbox of satellite data that they use to monitor tropical cyclones and hurricanes. This toolbox includes data from other low Earth orbit and geostationary satellites.

"The whole idea here is to use these tools to understand the initial genesis of the tropical cyclone, then to monitor its location, eye structure and intensity as it evolves, and to use that along with our numerical model forecast to generate a five- to seven-day forecast every six hours," said Jeff Hawkins, head of the Satellite Meteorological Applications Section for the Naval Research Laboratory in Monterey, California. His group is an early adopter of GPM data and monitors near-real time tropical cyclones worldwide. They distribute satellite products generated from multiple satellites' data to operational and research users, including the Navy and Air Force's Joint Typhoon Warning Center in Hawaii and the U.S. National Hurricane Center in Florida.

The addition of GPM data to the current suite of satellite data is timely. Its predecessor precipitation satellite, the Tropical Rainfall Measuring Mission, is in the17th year of its operation. GPM's new high-resolution microwave imager data and the unique radar data ensure that forecasters and modelers won't have a gap in coverage.

All GPM data products will be released to the public by Sept. 2, 2014. Current and future data sets are available to registered users from NASA Goddard's Precipitation Processing Center website at: http://pps.gsfc.nasa.gov/

Related links:

GPM Mission - http://www.nasa.gov/gpm
Hurricane Arthur Updates - http://www.nasa.gov/content/goddard/arthur-atlantic/
Naval Research Laboratory Tropical Cyclones Page:  http://www.nrlmry.navy.mil/TC.html
SVS link to the animation - http://svs.gsfc.nasa.gov/goto?4186

Ellen Gray
NASA's Goddard Space Flight Center

Rob Gutro | Eurek Alert!
Further information:
http://www.nasa.gov/content/goddard/nasa-jaxas-new-precipitation-satellite-sees-first-atlantic-hurricane/

Further reports about: Atlantic Flight GPM Hurricane NASA Observatory Space cyclones observations tropical

More articles from Earth Sciences:

nachricht New Link Between Ocean Microbes and Atmosphere Uncovered
22.05.2015 | University of California, San Diego

nachricht Scientists tackle mystery of thunderstorms that strike at night
21.05.2015 | National Center for Atmospheric Research/University Corporation for Atmospheric Research

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>