Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA catches the very brief life of Tropical Cyclone Peta

24.01.2013
Infrared data from NASA's Aqua satellite has shown that soon after a low pressure system in northwestern West Australia became Tropical Storm Peta, it made landfall and started to fall apart.

Early on Jan. 22, the Joint Typhoon Warning Center (JTWC) gave System 93S a high chance for development into a tropical depression. At that time, System 93S was located near 19.2S and 120.7E, about 415 nautical miles (477.6 miles/768.6 km) east-northeast of Learmonth, Australia. Satellite imagery showed that the center is consolidating, and bands of thunderstorms had developed, so the Australian Bureau of Meteorology had posted a watch for the coast of Western Australia, from De Grey to Onslow, including Port Hedland and Karratha. By 2100 UTC (4 p.m. EST/U.S.) the low became Tropical Depression 12S in the Southern Indian Ocean.


TRMM revealed that rain was falling at a rate of up to 94 mm (~3.7 inches) per hour near the center of the developing tropical cyclone. A 3-D image constructed from TRMM's PR data showed that some intense storms had tops reaching above 16 km (~9.9 miles).

Credit: NASA/SSAI, Hal Pierce

NASA's Tropical Rainfall Measuring Mission (TRMM) satellite saw tropical storm Peta forming off the coast of Port Hedland, Australia on January 22, 2013 at 1631 UTC (11:31 a.m. EST). Precipitation data from TRMM's Microwave Imager and Precipitation Radar (PR) instruments were coupled with enhanced infrared imagery from TRMM's Visible and InfraRed Scanner (VIRS) at NASA's Goddard Space Flight Center in Greenbelt, Md. to create a full view of Peta's rainfall rates. TRMM revealed that rain was falling at a rate of up to 94 mm (~3.7 inches) per hour near the center of the developing tropical cyclone. A 3-D image constructed from TRMM's PR data showed that some intense storms had tops reaching above 16 km (~9.9 miles).

On Jan. 23 at 0900 UTC, the depression gained strength and became Tropical Storm Peta. Peta moved over land in the Pilbara Coast near Karratha and was still over land by 1500 UTC (10 a.m. EST/U.S.). At that time, Peta was centered near 21.6 south and 117.3 east, about 180 nautical miles (207 miles/333 km) east of Learmonth, Australia. Peta's maximum sustained winds were near 35 knots (40 mph/64.8 kph) and it was moving to the south-southwest at 6 knots (7 mph/11.1 kph).

JTWC noted that radar imagery on Jan. 23 from Dampier, Australia showed the low-level circulation center was becoming increasingly difficult to pinpoint as Peta continued moving over land.

NASA's Aqua satellite passed over Western Australia on Jan. 23 at 0547 UTC (12:47 a.m. EST/U.S.) and the Atmospheric Infrared Sounder (AIRS) instrument gathered temperature data using infrared light. The AIRS data revealed that cloud top temperatures have warmed which indicates the strength in the uplift of air (that helps form thunderstorms) has weakened. The AIRS data also showed that the overall structure of the storm was becoming irregular.

By 1000 UTC (5 a.m. EST/U.S./6 p.m. WST local time, Australia) the Australian Bureau of Meteorology (ABM) noted that Peta had become an ex-tropical cyclone. The center of circulation was inland and just southeast of Karratha. ABM canceled the Cyclone Warning for coastal areas between Port Hedland and Dampier, including Karratha. Although the wind danger has passed, residents along the Pilbara coast may still experience heavy rainfall.

Forecasters at the Joint Typhoon Warning Center expect Peta to re-emerge over the open waters of the Indian Ocean, but do not expect the storm to strengthen. The movement over land and an increase in vertical wind shear has weakened the storm and will cause the storm to dissipate over the ocean.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>