Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA 3-D Image Clearly Shows Wind Shear's Effect on Tropical Storm Gabrielle

12.09.2013
Data obtained from NASA's TRMM satellite was used to create a 3-D image of Tropical Storm Gabrielle's rainfall that clearly showed wind shear pushed all of the storm's the rainfall east of its center.

NASA's Tropical Rainfall Measuring Mission satellite known as "TRMM" flew directly above tropical Storm Gabrielle on September 10, 2013 at 2124 UTC (5:24 p.m. EDT) as the storm approached Bermuda. TRMM's Precipitation Radar (PR) data found that rain was falling at a rate of over 127mm/~5 inches per hour in a line of intense storms southeast of Bermuda. TRMM PR also found that the tallest thunderstorms, reaching to heights above 15.5km (~9.6 miles), were located in an area close to Gabrielle's center of circulation.


This 3-D image of Tropical Storm Gabrielle's rainfall was created by data from NASA's TRMM satellite, and clearly shows wind shear had pushed all the rainfall east of center.
Image Credit: SSAI/NASA, Hal Pierce

Wind shear was affecting Gabrielle on Sept. 10 and continued to affect the storm on Sept. 11. Winds are blowing from the southwest at 15 to 20 knots and pushing the clouds and rain associated with Gabrielle to the northeast of the center. On Sept. 11, tropical storm force winds extend outward up to 115 miles/185 km, and because of wind shear, those strong winds were mostly northeast of the center.

Wind shear is basically any change in wind speed or direction along a straight line. In reference to tropical cyclones it means winds vertically from the ocean surface to top of the troposphere. Wind shear removes the heat and moisture that tropical cyclones require around their center of circulation and it will elongate the storm. When a storm elongates, basically the top is blown away from the bottom part of the storm, tilting the circulation center (think of tilting a tire at a 45 degree angle for example). Whenever the center tilts, it can't rotate as easily, and it's a less-efficient heat engine, so winds coming in at the low levels and flowing out at the upper levels get disrupted, generally causing the storm to weaken.

Although Bermuda's watches and warnings have been dropped, Gabrielle is still expected to bring between 1 and 3 inches of rainfall to the island today. Tropical-storm force winds will wane early on Sept. 11, but rough surf is expected to continue as Gabrielle pulls away.

At 8 a.m. EDT/1200 UTC, Gabrielle's maximum sustained winds were near 50 mph/85 kph and weakening is forecast during the next 48 hours. The center of Tropical Storm Gabrielle was located near latitude 32.4 north and longitude 65.7 west. At that time, Gabrielle was stationary but is expected to start moving slowly to the northwest then turn north on Sept. 12. At 8 a.m. EDT an elevated station at Commissioners Point on Bermuda reported a wind gust of 47 mph/76 kph.

The National Hurricane Center noted that over the next two to three days, whatever is left of Gabrielle is expected to merge with a frontal system moving east.

Text credit: Rob Gutro/Hal Pierce
SSAI/NASA's Goddard Space Flight Center

Rob Gutro/Hal Pierce | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/content/goddard/gabrielle-atlantic-ocean/

More articles from Earth Sciences:

nachricht Research sheds new light on forces that threaten sensitive coastlines
24.04.2017 | Indiana University

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>