Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's TRMM Satellite Sees Tropical Storm Lua's Rainfall

15.03.2012
A tropical storm called Lua formed in the Indian Ocean off Australia's northwestern coast on March 13, 2012. NASA's TRMM satellite passed over Lua and observed moderate rainfall and strong towering thunderstorms within on March 13. By March 14, it was turning back toward Australia and storm warnings had been posted.

The area of Australia where Cyclone Lua is located is sparsely populated, but Lua caused the shutdown of over one quarter of the country's crude oil production.


The area covered by TRMM's Precipitation Radar on March 13, 2012 showed thunderstorm towers in feeder (thunderstorm) bands located to the southwest and northeast of Cyclone Lua's center reached heights of almost 15km (9.3 miles), indicating strong thunderstorms.
Credit: NASA/SSAI, Hal Pierce

The Tropical Rainfall Measuring Mission (TRMM) satellite flew over that area on March 13, 2012 at 1622 UTC (12:22 p.m. EDT). A rainfall analysis was conducted at NASA's Goddard Space Flight Center in Greenbelt, Md. using TRMM's Microwave Imager (TMI) and Precipitation Radar (PR) instruments.

It was overlaid on an enhanced infrared image from TRMM's Visible and InfraRed Scanner (VIRS) and showed that rainfall intensity was mainly in the moderate range of 20 to 30 mm/hr (~0.8 to 1.2 inches/hr). The area covered by TRMM's Precipitation Radar (PR) did not include Lua's center of circulation but storm towers in feeder bands southwest and northeast of the storm reached to heights of almost 15 km (9.3 miles).

Lua is predicted to circle back toward the northwestern coast of Australia and attain minimal hurricane force winds on March 15, 2012.

On March 14 at 1500 UTC (11 a.m. EDT), Tropical Storm Lua's maximum sustained winds were near 50 knots (57.5 mph/92.6 kph). It was located about 425 nautical miles (489 miles/787 km) northwest of Port Hedland, Australia. It was centered near 15.6 South and 112.9 East. Lua is moving to the northeast near 5 knots (5.7 mph/9.3 kph) but is expected to turn to the southeast and head toward land.

Infrared satellite imagery shows that the strongest convection (rising air that forms thunderstorms that make up the cyclone) is consolidating and strengthening. There is also some drier air moving into the storm's center and easterly vertical wind shear has increased to around 20 knots (23 mph/37.0). Both of those factors are limiting the storm's ability to intensify more. The wind shear is forecast to weaken over the next day, allowing Cyclone Lua to strengthen before it makes landfall.

Forecasters at the Joint Typhoon Warning Center expect the storm to reach peak wind speeds of up to 90 knots (103 mph/168 kph) before landfall and hold together inland as a tropical cyclone all the way to the Gibson Desert.

Currently, communities in Western Australia's Pilbara and Kimberley regions are on alert. Cyclone Lua has now prompted a Cyclone Watch from Cape Leveque to Mardie, Western Australia. According to the latest forecast from the Joint Typhoon Warning Center, Cyclone Lua is moving north, but will turn to the southeast and strengthen into a cyclone before making landfall north of Port Hedland on Friday, March 16.

Text Credit: Hal Pierce/Rob Gutro
SSAI/NASA's Goddard Space Flight Center, Greenbelt, Md.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2012/h2012_Lua.html

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>