Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's TRMM Satellite Sees Tropical Storm Lua's Rainfall

15.03.2012
A tropical storm called Lua formed in the Indian Ocean off Australia's northwestern coast on March 13, 2012. NASA's TRMM satellite passed over Lua and observed moderate rainfall and strong towering thunderstorms within on March 13. By March 14, it was turning back toward Australia and storm warnings had been posted.

The area of Australia where Cyclone Lua is located is sparsely populated, but Lua caused the shutdown of over one quarter of the country's crude oil production.


The area covered by TRMM's Precipitation Radar on March 13, 2012 showed thunderstorm towers in feeder (thunderstorm) bands located to the southwest and northeast of Cyclone Lua's center reached heights of almost 15km (9.3 miles), indicating strong thunderstorms.
Credit: NASA/SSAI, Hal Pierce

The Tropical Rainfall Measuring Mission (TRMM) satellite flew over that area on March 13, 2012 at 1622 UTC (12:22 p.m. EDT). A rainfall analysis was conducted at NASA's Goddard Space Flight Center in Greenbelt, Md. using TRMM's Microwave Imager (TMI) and Precipitation Radar (PR) instruments.

It was overlaid on an enhanced infrared image from TRMM's Visible and InfraRed Scanner (VIRS) and showed that rainfall intensity was mainly in the moderate range of 20 to 30 mm/hr (~0.8 to 1.2 inches/hr). The area covered by TRMM's Precipitation Radar (PR) did not include Lua's center of circulation but storm towers in feeder bands southwest and northeast of the storm reached to heights of almost 15 km (9.3 miles).

Lua is predicted to circle back toward the northwestern coast of Australia and attain minimal hurricane force winds on March 15, 2012.

On March 14 at 1500 UTC (11 a.m. EDT), Tropical Storm Lua's maximum sustained winds were near 50 knots (57.5 mph/92.6 kph). It was located about 425 nautical miles (489 miles/787 km) northwest of Port Hedland, Australia. It was centered near 15.6 South and 112.9 East. Lua is moving to the northeast near 5 knots (5.7 mph/9.3 kph) but is expected to turn to the southeast and head toward land.

Infrared satellite imagery shows that the strongest convection (rising air that forms thunderstorms that make up the cyclone) is consolidating and strengthening. There is also some drier air moving into the storm's center and easterly vertical wind shear has increased to around 20 knots (23 mph/37.0). Both of those factors are limiting the storm's ability to intensify more. The wind shear is forecast to weaken over the next day, allowing Cyclone Lua to strengthen before it makes landfall.

Forecasters at the Joint Typhoon Warning Center expect the storm to reach peak wind speeds of up to 90 knots (103 mph/168 kph) before landfall and hold together inland as a tropical cyclone all the way to the Gibson Desert.

Currently, communities in Western Australia's Pilbara and Kimberley regions are on alert. Cyclone Lua has now prompted a Cyclone Watch from Cape Leveque to Mardie, Western Australia. According to the latest forecast from the Joint Typhoon Warning Center, Cyclone Lua is moving north, but will turn to the southeast and strengthen into a cyclone before making landfall north of Port Hedland on Friday, March 16.

Text Credit: Hal Pierce/Rob Gutro
SSAI/NASA's Goddard Space Flight Center, Greenbelt, Md.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2012/h2012_Lua.html

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>