Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moved by Geodynamics

22.06.2010
Underground Forces: Deformation Processes in Gravel Deposits

Deformation bands in the gravel layers of the Eisenstadt-Sopron Basin form as a result of heterogeneous displacement in the surrounding sediment. This is caused by gradients in the deformation intensity, which occur both parallel and perpendicular to a fault. These findings from a project funded by the Austrian Science Fund (FWF) will help scientists to reach a better understanding of both basic geological processes and the formation and structure of oil and water reservoirs.

As impressively demonstrated by the Himalayas and Pacific oceanic trenches, tectonic forces can really get things moving. However, even these dramatic geological manifestations move just a few millimetres or centimetres per year. Other phenomena associated with geological forces, known as deformation bands, are also subject to movement on a similar scale. These bands arise in soft porous rocks, such as sandstone. They occur where coarse-grained rocks are displaced by the shear forces of the overlying or underlying rock horizons, or undergo a change in volume. In contrast to what is known as a fault, in which the layer of rock ruptures, in the deformation bands, sediment grains are merely fractured or reorganised. The porosity of the rock and, therefore, its permeability to fluids, changes as a result of this process. Deformation bands thus contribute to the formation and structure of oil or water reservoirs. Attaining a better understanding of their effect on the surrounding rock is the aim of a project being carried out at the Department for Geodynamics and Sedimentology at the University of Vienna.

IT'S ALL ABOUT THE GRAIN!
As part of this study, project leader Dr. Ulrike Exner and her team successfully demonstrated that, due to their relatively coarse grain size, deformation bands in gravels in the Eisenstadt-Sopron Basin near Lake Neusiedl on the Austrian-Hungarian border display a gradient in the strain intensity. This gradient runs from the undeformed neighbouring rock to the middle of the deformation band. As Dr. Exner outlines: "The stresses responsible for this act perpendicular of the deformation band. However, we discovered that a displacement gradient also exists parallel to the fault zone. The largest displacement can be measured in the middle of the deformation band. It decreases above and below this point towards the tips of the band." The presence of these two differently oriented displacement gradients causes folding in the surrounding sediment layers.
REVERSE DRAG
Dr. Exner explains the further effects of these heterogeneous deformations in the rock as follows: "The surrounding rock horizons begin to deform. This effect is known as reverse drag. In closely-spaced deformation bands, such drags can even overlap. The resulting geometrical patterns become increasingly complex." However, as Dr. Exner also states, models exist that can explain these patterns: "The so-called domino model explains these patterns in terms of the rotation of blocks of rock between the different deformation bands. Because the rock is still soft and the deformation proceeds very slowly, the behaviour of these blocks is ductile and they are easily deformed."

In the deformation bands examined as part of this project, the ratio between the displacement of the layers of rock pushing against each other and the length of the deformation bands is striking. These ratios, which range from 1:100 to 1:10, are unusually large. According to Dr. Exner, this could facilitate the generation of reverse drag.

Despite the fact that the processes studied by Dr. Exner unfold below the surface of the earth, her work is of direct and practical relevance to everyday life above ground: deformation bands mainly form in porous rock which, due to the presence of numerous pores, also acts as a reservoir for oil or water. Deformation bands alter porosity and can therefore influence the extraction of oil or water. Moreover, the relevance of this FWF project also extends to heavenly heights: the calcareous sandstone, also referred to as Leithakalk (Miocene limestone found in Central Europe), from which St. Stephen's Cathedral in Vienna is built, originates from the Eisenstadt-Sopron Basin. Its porosity - and thus also its response to environmental impacts and protective measures - is also influenced by deformation bands.

Data were presented at the "European Geosciences Union General Assembly 2010", 2.-7. May in Vienna, Austria.

Image and text available from Moday, 21th June 2010, 9.00 a.m. CET onwards:
http://www.fwf.ac.at/en/public_relations/press/pv201006-en.html
Scientific Contact:
Dr. Ulrike Exner
University of Vienna
Department for Geodynamics and Sedimentology Althanstrasse 14 1090 Vienna, Austria T +43 / 650 / 35 66 948 E ulrike.exner@univie.ac.at
Austrian Science Fund (FWF):
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / 1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
W http://www.fwf.ac.at
Copy Editing & Distribution:
PR&D - Public Relations for Research & Education Campus Vienna Biocenter 2 1030 Vienna, Austria T +43 / 1 / 505 70 44 E contact@prd.at W http://www.prd.at

Marta Korinkova | PR&D
Further information:
http://www.fwf.ac.at
http://www.fwf.ac.at/en/public_relations/press/pv201006-en.html

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>