Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moved by Geodynamics

22.06.2010
Underground Forces: Deformation Processes in Gravel Deposits

Deformation bands in the gravel layers of the Eisenstadt-Sopron Basin form as a result of heterogeneous displacement in the surrounding sediment. This is caused by gradients in the deformation intensity, which occur both parallel and perpendicular to a fault. These findings from a project funded by the Austrian Science Fund (FWF) will help scientists to reach a better understanding of both basic geological processes and the formation and structure of oil and water reservoirs.

As impressively demonstrated by the Himalayas and Pacific oceanic trenches, tectonic forces can really get things moving. However, even these dramatic geological manifestations move just a few millimetres or centimetres per year. Other phenomena associated with geological forces, known as deformation bands, are also subject to movement on a similar scale. These bands arise in soft porous rocks, such as sandstone. They occur where coarse-grained rocks are displaced by the shear forces of the overlying or underlying rock horizons, or undergo a change in volume. In contrast to what is known as a fault, in which the layer of rock ruptures, in the deformation bands, sediment grains are merely fractured or reorganised. The porosity of the rock and, therefore, its permeability to fluids, changes as a result of this process. Deformation bands thus contribute to the formation and structure of oil or water reservoirs. Attaining a better understanding of their effect on the surrounding rock is the aim of a project being carried out at the Department for Geodynamics and Sedimentology at the University of Vienna.

IT'S ALL ABOUT THE GRAIN!
As part of this study, project leader Dr. Ulrike Exner and her team successfully demonstrated that, due to their relatively coarse grain size, deformation bands in gravels in the Eisenstadt-Sopron Basin near Lake Neusiedl on the Austrian-Hungarian border display a gradient in the strain intensity. This gradient runs from the undeformed neighbouring rock to the middle of the deformation band. As Dr. Exner outlines: "The stresses responsible for this act perpendicular of the deformation band. However, we discovered that a displacement gradient also exists parallel to the fault zone. The largest displacement can be measured in the middle of the deformation band. It decreases above and below this point towards the tips of the band." The presence of these two differently oriented displacement gradients causes folding in the surrounding sediment layers.
REVERSE DRAG
Dr. Exner explains the further effects of these heterogeneous deformations in the rock as follows: "The surrounding rock horizons begin to deform. This effect is known as reverse drag. In closely-spaced deformation bands, such drags can even overlap. The resulting geometrical patterns become increasingly complex." However, as Dr. Exner also states, models exist that can explain these patterns: "The so-called domino model explains these patterns in terms of the rotation of blocks of rock between the different deformation bands. Because the rock is still soft and the deformation proceeds very slowly, the behaviour of these blocks is ductile and they are easily deformed."

In the deformation bands examined as part of this project, the ratio between the displacement of the layers of rock pushing against each other and the length of the deformation bands is striking. These ratios, which range from 1:100 to 1:10, are unusually large. According to Dr. Exner, this could facilitate the generation of reverse drag.

Despite the fact that the processes studied by Dr. Exner unfold below the surface of the earth, her work is of direct and practical relevance to everyday life above ground: deformation bands mainly form in porous rock which, due to the presence of numerous pores, also acts as a reservoir for oil or water. Deformation bands alter porosity and can therefore influence the extraction of oil or water. Moreover, the relevance of this FWF project also extends to heavenly heights: the calcareous sandstone, also referred to as Leithakalk (Miocene limestone found in Central Europe), from which St. Stephen's Cathedral in Vienna is built, originates from the Eisenstadt-Sopron Basin. Its porosity - and thus also its response to environmental impacts and protective measures - is also influenced by deformation bands.

Data were presented at the "European Geosciences Union General Assembly 2010", 2.-7. May in Vienna, Austria.

Image and text available from Moday, 21th June 2010, 9.00 a.m. CET onwards:
http://www.fwf.ac.at/en/public_relations/press/pv201006-en.html
Scientific Contact:
Dr. Ulrike Exner
University of Vienna
Department for Geodynamics and Sedimentology Althanstrasse 14 1090 Vienna, Austria T +43 / 650 / 35 66 948 E ulrike.exner@univie.ac.at
Austrian Science Fund (FWF):
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / 1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
W http://www.fwf.ac.at
Copy Editing & Distribution:
PR&D - Public Relations for Research & Education Campus Vienna Biocenter 2 1030 Vienna, Austria T +43 / 1 / 505 70 44 E contact@prd.at W http://www.prd.at

Marta Korinkova | PR&D
Further information:
http://www.fwf.ac.at
http://www.fwf.ac.at/en/public_relations/press/pv201006-en.html

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>