Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moved by Geodynamics

22.06.2010
Underground Forces: Deformation Processes in Gravel Deposits

Deformation bands in the gravel layers of the Eisenstadt-Sopron Basin form as a result of heterogeneous displacement in the surrounding sediment. This is caused by gradients in the deformation intensity, which occur both parallel and perpendicular to a fault. These findings from a project funded by the Austrian Science Fund (FWF) will help scientists to reach a better understanding of both basic geological processes and the formation and structure of oil and water reservoirs.

As impressively demonstrated by the Himalayas and Pacific oceanic trenches, tectonic forces can really get things moving. However, even these dramatic geological manifestations move just a few millimetres or centimetres per year. Other phenomena associated with geological forces, known as deformation bands, are also subject to movement on a similar scale. These bands arise in soft porous rocks, such as sandstone. They occur where coarse-grained rocks are displaced by the shear forces of the overlying or underlying rock horizons, or undergo a change in volume. In contrast to what is known as a fault, in which the layer of rock ruptures, in the deformation bands, sediment grains are merely fractured or reorganised. The porosity of the rock and, therefore, its permeability to fluids, changes as a result of this process. Deformation bands thus contribute to the formation and structure of oil or water reservoirs. Attaining a better understanding of their effect on the surrounding rock is the aim of a project being carried out at the Department for Geodynamics and Sedimentology at the University of Vienna.

IT'S ALL ABOUT THE GRAIN!
As part of this study, project leader Dr. Ulrike Exner and her team successfully demonstrated that, due to their relatively coarse grain size, deformation bands in gravels in the Eisenstadt-Sopron Basin near Lake Neusiedl on the Austrian-Hungarian border display a gradient in the strain intensity. This gradient runs from the undeformed neighbouring rock to the middle of the deformation band. As Dr. Exner outlines: "The stresses responsible for this act perpendicular of the deformation band. However, we discovered that a displacement gradient also exists parallel to the fault zone. The largest displacement can be measured in the middle of the deformation band. It decreases above and below this point towards the tips of the band." The presence of these two differently oriented displacement gradients causes folding in the surrounding sediment layers.
REVERSE DRAG
Dr. Exner explains the further effects of these heterogeneous deformations in the rock as follows: "The surrounding rock horizons begin to deform. This effect is known as reverse drag. In closely-spaced deformation bands, such drags can even overlap. The resulting geometrical patterns become increasingly complex." However, as Dr. Exner also states, models exist that can explain these patterns: "The so-called domino model explains these patterns in terms of the rotation of blocks of rock between the different deformation bands. Because the rock is still soft and the deformation proceeds very slowly, the behaviour of these blocks is ductile and they are easily deformed."

In the deformation bands examined as part of this project, the ratio between the displacement of the layers of rock pushing against each other and the length of the deformation bands is striking. These ratios, which range from 1:100 to 1:10, are unusually large. According to Dr. Exner, this could facilitate the generation of reverse drag.

Despite the fact that the processes studied by Dr. Exner unfold below the surface of the earth, her work is of direct and practical relevance to everyday life above ground: deformation bands mainly form in porous rock which, due to the presence of numerous pores, also acts as a reservoir for oil or water. Deformation bands alter porosity and can therefore influence the extraction of oil or water. Moreover, the relevance of this FWF project also extends to heavenly heights: the calcareous sandstone, also referred to as Leithakalk (Miocene limestone found in Central Europe), from which St. Stephen's Cathedral in Vienna is built, originates from the Eisenstadt-Sopron Basin. Its porosity - and thus also its response to environmental impacts and protective measures - is also influenced by deformation bands.

Data were presented at the "European Geosciences Union General Assembly 2010", 2.-7. May in Vienna, Austria.

Image and text available from Moday, 21th June 2010, 9.00 a.m. CET onwards:
http://www.fwf.ac.at/en/public_relations/press/pv201006-en.html
Scientific Contact:
Dr. Ulrike Exner
University of Vienna
Department for Geodynamics and Sedimentology Althanstrasse 14 1090 Vienna, Austria T +43 / 650 / 35 66 948 E ulrike.exner@univie.ac.at
Austrian Science Fund (FWF):
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / 1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
W http://www.fwf.ac.at
Copy Editing & Distribution:
PR&D - Public Relations for Research & Education Campus Vienna Biocenter 2 1030 Vienna, Austria T +43 / 1 / 505 70 44 E contact@prd.at W http://www.prd.at

Marta Korinkova | PR&D
Further information:
http://www.fwf.ac.at
http://www.fwf.ac.at/en/public_relations/press/pv201006-en.html

More articles from Earth Sciences:

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

nachricht NASA flights gauge summer sea ice melt in the Arctic
25.07.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>