Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Model of Geological Strata May Aid Oil Extraction, Water Recovery and Earth History Studies

25.05.2012
‘Largest known chemical wave’ caused previously unrecognized effects, said Sandia researcher

A Sandia modeling study contradicts a long-held belief of geologists that pore sizes and chemical compositions are uniform throughout a given strata, which are horizontal slices of sedimentary rock.

By understanding the variety of pore sizes and spatial patterns in strata, geologists can help achieve more production from underground oil reservoirs and water aquifers. Better understanding also means more efficient use of potential underground carbon storage sites, and better evaluations of the possible movement of radionuclides in nuclear waste depositories to determine how well the waste will be isolated.

Yifeng Wang examines a sedimentary outcrop in New Mexico's Tijeras Canyon. Wang is the lead author of a paper published recently in Nature Communications that offers new insights into pore size and distribution in horizontal slices of sedimentary rock. (Photo by Randy Montoya) Click on thumbnail for high-resolution image.

“I think our paper for the first time provides a reasonable explanation for the origin of patterns,” said lead researcher Yifeng Wang. “We found we could predict the variations in pores as well as the heterogeneity of a reservoir.”

The analysis, published Feb. 21 in Nature Communications, was able to match the field observations published in 2006 by second author David Budd, professor of geological sciences at the University of Colorado at Boulder.

Budd said Wang put together a session at the 2010 annual meeting of the Geochemical Society at which Budd presented field studies of porosity and chemical composition. “He recognized that the data I showed could be explained by stress-induced chemical waves. He subsequently developed the numerical model to test his idea. Then we used the 2006 data set to demonstrate the correspondence between his model’s outcomes and the field data.”

A chemical wave in this context relies upon mineral dissolution and precipitation, powered by geologic stress, to penetrate surrounding material, just as an ocean wave powered by the moon’s gravitational pull rides up on a beach. Ocean waves shift sand; Wang found that chemical waves modify the spatial distribution of rock porosity.

As Wang puts it, a chemical wave is “like water rippling. The concentration of a chemical species varies periodically in space (a standing wave) or sometime such variations propagate through space (a travelling wave).

“The one we revealed in dolomite (a type of sedimentary rock) may be the largest chemical wave ever known, because no one has thought to look for chemical waves in strata. It occurred on the scale of meters to tens of meters and propagated between a hundred to a thousand years.” Chemical waves are usually observed on much smaller scales in laboratories.

Using the chemical wave concept and well-known equations for material stresses, Wang formulated a mathematical model.

The upper diagram portrays the mechanism driving a chemical wave, with stress from surrounding formations acting to percolate water through a horizontal layer of dolomite. The bottom graph shows the results of high-resolution sampling performed every 0.3 meters showing complex patterns of lateral porosity and permeability in dolomite strata. The solid red line is a three-day moving average. The images are modified from the technical paper. (Image by Yifeng Wang) Click on thumbnail for high-resolution image.

“The remarkable thing is that the model predictions match very well with many seemingly uncorrelated observations. The model predictions not only match the observed porosity patterns, but also match very well with chemical and isotopic signatures. This is the power of mathematical analysis,” Wang said.

Wang’s model isn’t large enough yet to derive equations meaningful to an entire reservoir — a process called upscaling. Still, he said, “Another way to capture this variability is to use mathematical analysis to derive upscaled flow-transport equations. This work is on the way.”

The work may help trounce geologists’ belief that each layer of sedimentary rock, deposited over eons, is more or less homogenous in porosity and composition. Thus a single core sample obtained from a given depth was thought to chemically represent the entire layer.

But Budd’s findings showed that horizontal variations within a layer of sedimentary rock could be quite significant — in some cases, as large as vertical variations. This would affect not only the amount of fluid stored or percolating through a rock but the amount of pressure needed to shoot liquids to Earth’s surface. No one knew why these variations occurred, nor had anyone measured their magnitude.

The problem has always been how to extend horizontally the knowledge gained from vertical bore holes that may be 1,300 feet apart, Budd said.

Wang’s model also reveals important information about Earth’s geological changes.

“Even the shape of a variation may reveal important facts about past times,” he said. “Our work may have geologists rethinking their method of field sampling and their interpretation of data about Earth’s evolution.”

The work was supported by Sandia’s Laboratory Directed Research and Development program and by industrial supporters of the AVID (analysis of variability in dolomites) consortium.

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies and economic competitiveness.

Sandia news media contact: Neal Singer, nsinger@sandia.gov, (505) 845-7078

Neal Singer | Newswise Science News
Further information:
http://www.sandia.gov

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>