Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New meteorite suggests that asteroid surfaces more complex than previously thought

21.12.2012
Scientists around the world work together on speedy space rock analysis

Meteorites that had fallen from an asteroid impact that lit up the skies over California and Nevada in April are showing scientists just how complex an asteroid surface can be.


These are some of the 77 fragments of the Sutter’s Mill meteorite fall that were collected in April 2012.

Credit: NASA/E. James

A new study published in Science this week by an international team of researchers describes the speedy recovery of the meteorites and reports that this space rock is an unusual example from a rare group known as carbonaceous chondrites, which contain some of the oldest material in the solar system.

The study of these meteorites and others like them could hold answers to unsolved mysteries about the origin of life on Earth as they contain molecules such as water and amino acids.

"We found that this meteorite is a 'breccia,' a mixture of different rocks that accumulated at the surface of a larger asteroid, and those surfaces can be more diverse than we thought before," said co-author Denton Ebel, chair of the Division of Physical Sciences at the American Museum of Natural History.

About eight months ago, several Doppler weather radars detected a hail of rocks following a fireball traveling at a record-breaking 28.6 kilometers per second (about 64,000 miles per hour) over the Sierra Nevada in northern California. An immediate search-and-recover mission, led by NASA Ames Research Center, the SETI Institute, and the University of California, Davis, resulted in the retrieval of 77 meteorites. The fragments, which were in pristine shape despite entering the atmosphere at a speed twice as fast as a typical meteorite fall, were collectively called the Sutter's Mill meteorite after the nearby historical site that started the California Gold Rush.

"From the loud sonic boom, we quickly realized that this was an asteroid several meters in size, the biggest object to hit over land since the impact of asteroid 2008 TC3 in the north of Sudan in 2008," said lead author and meteor astronomer Peter Jenniskens of NASA Ames and SETI. "That asteroid proved to be a mixed bag of different types of meteorites, and we realized it would be very interesting to find out how diverse the Sutter's Mill meteorites were."

Several fragments were sent to laboratories around the world for simultaneous analysis of the meteorite's mineralogy and structure. The Sutter's Mill meteorite was classified as a CM chondrite, C standing for carbonaceous—high in carbon content—and M standing for the group's type specimen, the Mighei meteorite that fell in Ukraine in the late 1800s.

Ebel received five Sutter's Mill meteorites to study using x-ray computed tomography (CT), an imaging technique that takes pictures of the inside of a specimen without destroying it. The Museum's scanner takes more than 1,000 x-ray images of the object as it rotates inside of the machine. The data collected from these x-rays are then converted by computers to form a 3-D image of the specimen's interior, one slice at a time, to understand the components of the meteorite.

"In the same way that medical tomography, called CAT scanning, is used to image the interior of the human body, CT scanning in a research laboratory allows us to obtain images of the interiors of solid objects, but with a much higher resolution," Ebel said. "This is a fundamentally important tool not just for looking at rocks but for curating them and figuring out whether anything interesting is inside."

CT scans at the Museum, and at the University of California, Davis in an effort led by cosmochemist Qing-Zhu Yin, revealed that no two Sutter's Mill meteorites are the same. The meteorites contained angular pieces of different composition and density. They showed diversity on millimeter scale.

"This was the first time that a CM chondrite was found to be clearly a breccia," Yin said. "The rocky fragments came together following impacts on the parent asteroid, which implies that this meteorite originated from near its surface."

Analyses performed using different techniques at other institutions were in agreement: the mineralogy and other geochemical features of these fragments are unexpectedly diverse and complex. This suggests that the surface of the asteroid that spawned the CM chondrites, their "parent body," is more complex than previously thought.

"This meteorite is special because it records many collisional processes and mixing that we, oddly, don't see very often," Ebel said. "Maybe the real question is 'why don't we see more of this?' It could be that most of the samples we've worked with in the past didn't hold up very well as they entered the atmosphere. Or that we're just seeing a small segment of what's really out there because we don't have meteorite records of what fell to the Earth thousands or millions of years ago. We still have a lot of work to do to figure out what's really going on in the asteroid belt."

Kendra Snyder | EurekAlert!
Further information:
http://www.amnh.org

More articles from Earth Sciences:

nachricht Oceans may be large, overlooked source of hydrogen gas
21.07.2016 | Duke University

nachricht Groundwater discharge to upper Colorado River Basin varies in response to drought
21.07.2016 | US Geological Survey

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

Im Focus: Computer Simulation Renders Transient Chemical Structures Visible

Chemists at the University of Basel have succeeded in using computer simulations to elucidate transient structures in proteins. In the journal Angewandte Chemie, the researchers set out how computer simulations of details at the atomic level can be used to understand proteins’ modes of action.

Using computational chemistry, it is possible to characterize the motion of individual atoms of a molecule. Today, the latest simulation techniques allow...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

Hey robot, shimmy like a centipede

22.07.2016 | Information Technology

New record in materials research: 1 terapascals in a laboratory

22.07.2016 | Physics and Astronomy

University of Graz researchers challenge 140-year-old paradigm of lichen symbiosis

22.07.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>