Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meteorite bombardment may have made Earth more habitable

03.06.2009
Large bombardments of meteorites approximately four billion years ago could have helped to make the early Earth and Mars more habitable for life by modifying their atmospheres, suggests the results of a paper published today in the journal Geochimica et Cosmochima Acta.

When a meteorite enters a planet's atmosphere, extreme heat causes some of the minerals and organic matter on its outer crust to be released as water and carbon dioxide before it breaks up and hits the ground.

Researchers suggest the delivery of this water could have made Earth's and Mars' atmospheres wetter. The release of the greenhouse gas carbon dioxide could have trapped more energy from sunlight to make Earth and Mars warm enough to sustain liquid oceans.

In the new study, researchers from Imperial College London analysed the remaining mineral and organic content of fifteen fragments of ancient meteorites that had crashed around the world to see how much water vapour and carbon dioxide they would release when subjected to very high temperatures like those that they would experience upon entering the Earth's atmosphere.

The researchers used a new technique called pyrolysis-FTIR, which uses electricity to rapidly heat the fragments at a rate of 20,000 degrees Celsius per second, and they then measured the gases released.

They found that on average, each meteorite was capable of releasing up to 12 percent of the meteorites' mass as water vapour and 6 percent of the meteorites' mass as carbon dioxide when entering an atmosphere. They concluded that contributions from individual meteorites were small and were unlikely to have a significant impact on the atmospheres of planets on their own.

The researchers then analysed data from an ancient meteorite shower called the Late Heavy Bombardment (LHB), which occurred 4 billion years ago, where millions of rocks crashed to Earth and Mars over a period of 20 million years.

Using published models of meteoritic impact rates during the LHB, the researchers calculated that 10 billion tonnes of carbon dioxide and 10 billion tonnes of water vapour could have been delivered to the atmospheres of Earth and Mars each year.

This suggests that the LHB could have delivered enough carbon dioxide and water vapour to turn the atmospheres of the two planets into warmer and wetter environments that were more habitable for life, say the researchers.

Professor Mark Sephton, from Imperial's Department of Earth Science and Engineering believes the study provides important clues about Earth's ancient past:

"For a long time, scientists have been trying to understand why Earth is so water rich compared to other planets in our solar system. The LHB may provide a clue. This may have been a pivotal moment in our early history where Earth's gaseous envelope finally had enough of the right ingredients to nurture life on our planet."

Lead- author of the study, Dr Richard Court from Imperial's Department of Earth Science and Engineering, adds:

"Because of their chemistry, ancient meteorites have been suggested as a way of furnishing the early Earth with its liquid water. Now we have data that reveals just how much water and carbon dioxide was directly injected into the atmosphere by meteorites. These gases could have got to work immediately, boosting the water cycle and warming the planet."

However, researchers say Mars' good fortune did not last. Unlike Earth, Mars doesn't have a magnetic field to act as a protective shield from the Sun's solar wind. As a consequence, Mars was stripped of most of its atmosphere. A reduction in volcanic activity also cooled the planet. This caused its liquid oceans to retreat to the poles where they became ice.

For further information please contact:

Colin Smith
Press Officer
Imperial College London
Email: cd.smith@imperial.ac.uk
Tel: +44 (0)207 594 6712
Out of hours duty press officer: +44 (0)7803 886 248
1. "Meteorite ablation products and their contribution to the atmospheres of terrestrial planets: An experimental study using pyrolysis-FTIR", Geochemica et Cosmochima Acta, Monday 1 June 2009 (Print publication)

Richard W. Court (1), Mark A. Sephton (2)

(1) Department of Earth Science and Engineering, Imperial College London

(2) Department of Earth Science and Engineering, Imperial College London

2. About Imperial College London

Consistently rated amongst the world's best universities, Imperial College London is a science-based institution with a reputation for excellence in teaching and research that attracts 13,000 students and 6,000 staff of the highest international quality.

Innovative research at the College explores the interface between science, medicine, engineering and business, delivering practical solutions that improve quality of life and the environment - underpinned by a dynamic enterprise culture.

Since its foundation in 1907, Imperial's contributions to society have included the discovery of penicillin, the development of holography and the foundations of fibre optics. This commitment to the application of research for the benefit of all continues today, with current focuses including interdisciplinary collaborations to improve health in the UK and globally, tackle climate change and develop clean and sustainable sources of energy.

Colin Smith | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Earth Sciences:

nachricht New insights into the ancestors of all complex life
29.05.2017 | University of Bristol

nachricht A 3-D look at the 2015 El Niño
29.05.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Reptile vocalization is surprisingly flexible

30.05.2017 | Life Sciences

EU research project DEMETER strives for innovation in enzyme production technology

30.05.2017 | Power and Electrical Engineering

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>