Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Melting rock - Researchers unlocked the secrets of "deep" earthquakes

03.02.2009
How do earthquakes occur at great depths?

This is the question being answered by scientists working with Dr. Timm John from the Institute of Mineralogy at the University of Münster, using an innovative combination of field and laboratory work with numerical computer simulations.

The researchers from Münster, Kiel and Oslo (Norway) present their results in the latest issue of the prestigious magazine Nature Geoscience.

The margins of the Earth's tectonic plates are characterized by a very high level of earthquake activity, which can originate at depths of just a few - or of several hundred - kilometres.

At places where converging plates override each another at their margins, earthquakes often occur at depths of more than 50 kilometres below the Earth's surface. "The mechanisms of 'shallow' earthquakes which occur at a depth of up to 50 kilometres are very well known," says John, "and they are attributable to failure in the tectonic plates displaying brittle behaviour. However, the causes of deeper earthquakes are still unclear today." As a rule, the behaviour of rocks under conditions at greater depth is ductile and not brittle. Conventional wisdom, however, says that here too brittle-like failure in the rock plays a role in connection with earthquakes.

During fieldwork in western Norway John and his colleagues from the Center for Physics of Geological Processes at the University of Oslo found shear zones in the rock they examined which are attributable to ductile deformation. In addition, there were earthquake fault zones present which the current state of research would interpret as brittle failure structures, but which, according to the scientists' latest insights, have other causes: "Our examinations showed that deeper earthquakes can in many cases be explained by shear heating of the rock," says John.

In such a case, the heating process which comes into being as a result of an initially very slow deformation of the rock along evolving shear zones leads to the rock becoming increasingly weaker and thus more deformable. In turn, this increasing deformation causes it to heat up. This process, which is self-amplifying, ultimately leads to the rock along a very thin zone becoming so hot that it begins to melt. The entire pent-up stress can then be released at seismic speed on this melted rock. The result is an earthquake.

"The simulations, which took into account the data gained in the field and in the laboratory, also showed," says John, "that the shear zones and the earthquake fault zones were formed by the same process. Very small differences in the rock properties decide whether a shear zone is formed or the deformation structure actually develops into an earthquake fault zone."

Dr. Christina Heimken | idw
Further information:
http://www.uni-muenster.de/Mineralogie/personen/john.html
http://www.nature.com/ngeo/journal/v2/n2/abs/ngeo419.html

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>