Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Melting rock - Researchers unlocked the secrets of "deep" earthquakes

03.02.2009
How do earthquakes occur at great depths?

This is the question being answered by scientists working with Dr. Timm John from the Institute of Mineralogy at the University of Münster, using an innovative combination of field and laboratory work with numerical computer simulations.

The researchers from Münster, Kiel and Oslo (Norway) present their results in the latest issue of the prestigious magazine Nature Geoscience.

The margins of the Earth's tectonic plates are characterized by a very high level of earthquake activity, which can originate at depths of just a few - or of several hundred - kilometres.

At places where converging plates override each another at their margins, earthquakes often occur at depths of more than 50 kilometres below the Earth's surface. "The mechanisms of 'shallow' earthquakes which occur at a depth of up to 50 kilometres are very well known," says John, "and they are attributable to failure in the tectonic plates displaying brittle behaviour. However, the causes of deeper earthquakes are still unclear today." As a rule, the behaviour of rocks under conditions at greater depth is ductile and not brittle. Conventional wisdom, however, says that here too brittle-like failure in the rock plays a role in connection with earthquakes.

During fieldwork in western Norway John and his colleagues from the Center for Physics of Geological Processes at the University of Oslo found shear zones in the rock they examined which are attributable to ductile deformation. In addition, there were earthquake fault zones present which the current state of research would interpret as brittle failure structures, but which, according to the scientists' latest insights, have other causes: "Our examinations showed that deeper earthquakes can in many cases be explained by shear heating of the rock," says John.

In such a case, the heating process which comes into being as a result of an initially very slow deformation of the rock along evolving shear zones leads to the rock becoming increasingly weaker and thus more deformable. In turn, this increasing deformation causes it to heat up. This process, which is self-amplifying, ultimately leads to the rock along a very thin zone becoming so hot that it begins to melt. The entire pent-up stress can then be released at seismic speed on this melted rock. The result is an earthquake.

"The simulations, which took into account the data gained in the field and in the laboratory, also showed," says John, "that the shear zones and the earthquake fault zones were formed by the same process. Very small differences in the rock properties decide whether a shear zone is formed or the deformation structure actually develops into an earthquake fault zone."

Dr. Christina Heimken | idw
Further information:
http://www.uni-muenster.de/Mineralogie/personen/john.html
http://www.nature.com/ngeo/journal/v2/n2/abs/ngeo419.html

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>