Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Melting rock - Researchers unlocked the secrets of "deep" earthquakes

How do earthquakes occur at great depths?

This is the question being answered by scientists working with Dr. Timm John from the Institute of Mineralogy at the University of Münster, using an innovative combination of field and laboratory work with numerical computer simulations.

The researchers from Münster, Kiel and Oslo (Norway) present their results in the latest issue of the prestigious magazine Nature Geoscience.

The margins of the Earth's tectonic plates are characterized by a very high level of earthquake activity, which can originate at depths of just a few - or of several hundred - kilometres.

At places where converging plates override each another at their margins, earthquakes often occur at depths of more than 50 kilometres below the Earth's surface. "The mechanisms of 'shallow' earthquakes which occur at a depth of up to 50 kilometres are very well known," says John, "and they are attributable to failure in the tectonic plates displaying brittle behaviour. However, the causes of deeper earthquakes are still unclear today." As a rule, the behaviour of rocks under conditions at greater depth is ductile and not brittle. Conventional wisdom, however, says that here too brittle-like failure in the rock plays a role in connection with earthquakes.

During fieldwork in western Norway John and his colleagues from the Center for Physics of Geological Processes at the University of Oslo found shear zones in the rock they examined which are attributable to ductile deformation. In addition, there were earthquake fault zones present which the current state of research would interpret as brittle failure structures, but which, according to the scientists' latest insights, have other causes: "Our examinations showed that deeper earthquakes can in many cases be explained by shear heating of the rock," says John.

In such a case, the heating process which comes into being as a result of an initially very slow deformation of the rock along evolving shear zones leads to the rock becoming increasingly weaker and thus more deformable. In turn, this increasing deformation causes it to heat up. This process, which is self-amplifying, ultimately leads to the rock along a very thin zone becoming so hot that it begins to melt. The entire pent-up stress can then be released at seismic speed on this melted rock. The result is an earthquake.

"The simulations, which took into account the data gained in the field and in the laboratory, also showed," says John, "that the shear zones and the earthquake fault zones were formed by the same process. Very small differences in the rock properties decide whether a shear zone is formed or the deformation structure actually develops into an earthquake fault zone."

Dr. Christina Heimken | idw
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>