Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Melt water on Mars could sustain life

16.11.2012
Near surface water has shaped the landscape of Mars. Areas of the planet’s northern and southern hemispheres have alternately thawed and frozen in recent geologic history and comprise striking similarities to the landscape of Svalbard.

This suggests that water has played a more extensive role than previously envisioned, and that environments capable of sustaining life could exist, according to new research from the University of Gothenburg, Sweden.

Mars is a changing planet, and in recent geological time repeated freeze and thaw cycles has played a greater role than expected in terms of shaping the landscape. In an attempt to be able to make more reliable interpretations of the landscapes on Mars, researchers have developed new models for analysing images from the planet.

The process of analysing satellite images from Mars has been combined with similar studies of an arctic environment in Svalbard. Despite the fact that Svalbard is considerably warmer than Mars, the arctic landscape shows a number of striking similarities to certain parts of Mars.

One important common feature is the presence of permafrost and frozen subsurface water.

“In my thesis work, I have compared aerial images from Svalbard with the same resolution as satellite images from Mars, and combined with field-work we increase the ground resolution even further” explains Dr Andreas Johnsson from the University of Gothenburg’s Department of Earth Sciences, who has worked together with planetary researchers from Germany.

Having studied hundreds of gullies on Mars and compared these with Svalbard, the researchers found evidence that the gullies on Mars were likely formed by melting snow and water erosion. Field work has supplemented the interpretation of aerial images.

“The ability to get a first-hand experience with landforms that have been studied using aerial images is a unique feeling. One important insight we have gained is that, despite the high image resolution for both Svalbard and Mars, the camera can’t capture everything. What appears to be fine-grained sediment on an aerial image of Svalbard can actually turn out to be a very rocky area which has implications for certain types of landforms. It’s important to bear this in mind when studying images of Mars.”

Since Mars has a cyclical climate, the same conditions could recur in the future.

The existence of liquid water is a vital component if life on Mars is to be possible.

“Research on Earth has shown that organisms can survive in extreme cold environments with limited access to liquid water,” continues Dr Johnsson. “Studying various areas on Mars therefore enables us to investigate whether there could be environments with conditions capable of supporting life.”

Contact:

Andreas Johnsson, Doctor of Physical Geography, Department of Earth Sciences
University of Gothenburg,
tel.: +46 (0)31 786 2943, mobile: +46 (0)70 54 82 763
E-mail: andreasj@gvc.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>