Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Martian salts must touch ice to make liquid water, study shows


In chambers that mimic Mars’ conditions, researchers have shown how small amounts of liquid water could form on the planet despite its below-freezing temperatures.

Liquid water is an essential ingredient for life as we know it. Mars is one of the very few places in the solar system where scientists have seen promising signs of it – in gullies down crater rims, in instrument readings, and in Phoenix spacecraft self portraits that appeared to show wet beads on the lander’s leg several years ago.

A Mars Atmospheric Chamber in the Space Research Building at the University of Michigan on June 18, 2014. The chamber simulates the atmospheric conditions of Mars in hopes of producing water through the interaction of salt with the atmospheric conditions simulated by the chamber. The resulting research allows Astrobiologists to postulate about the potential of life on Mars.

Credit: Joseph Xu, Michigan Engineering Communications & Marketing

No one has directly detected liquid water beyond Earth, though. Experiments at the University of Michigan are among the first to test theories about how it could exist in a climate as cold as Mars’.

The researchers found that a type of salt present in Martian soil can readily melt ice it touches – just like salts do on Earth’s slippery winter walkways and roads. But this Martian salt cannot, as some scientists suggested, form liquid water by sucking vapor out of the air through a process called deliquescence.

“For me, the most exciting thing is that I can now understand how the droplets formed on the Phoenix leg,” said Nilton Renno, a professor of atmospheric, oceanic and space sciences at the University of Michigan in Ann Arbor who led the research. The new research is detailed in a paper accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union.

In 2008, Renno was the first to notice strange globules in photos Phoenix sent back. Over several weeks, the globules seemed to grow and coalesce. While Renno deemed them water and suggested that salts on the planet’s surface might make it so, many of his colleagues disagreed. Salts had never been found on Mars.

But then they were. Among those that Phoenix detected is calcium perchlorate, a mixture of calcium, chlorine and oxygen that’s found in arid places like the Atacama Desert in Chile. Years later, the Curiosity rover found it elsewhere on Mars. Now scientists believe it and other salts are sprinkled across the planet’s surface.

In the case of Phoenix, Renno believes the craft’s landing thrusters blasted away the topsoil, exposing the ice and melting it. That formed muddy saltwater that splashed on the lander’s leg as it touched down in the northern polar region. The salts allowed the droplets to remain liquid. Their existence and stability, Renno says, tipped scientists off to a cycle that doesn’t need always need help from an Earth-borne spacecraft.

The U-M researchers recreated the Phoenix landing site conditions in their lab in metal cylinders two feet high and five feet long. The late Martian spring/early summer temperatures in the chambers ranged from -121 degrees to -21 degrees Celsius (-185 to -5 Fahrenheit). Atmospheric pressure hovered around 1 percent of Earth’s. Relative humidity varied, but for most experiments, it was set to 100 percent.

They tested two scenarios: perchlorate by itself and perchlorate on top of water ice. In the perchlorate-only experiments, they put millimeter-thick layers of salt on a temperature-controlled plate or Mars-like soil. Even after more than three hours, no liquid water formed. That told them deliquescence wasn’t occurring, and isn’t likely to be a significant process on Mars.

When the researchers placed calcium perchlorate or salty soil directly on a 3-millimeter-thick ice layer, drops of liquid water formed within minutes when the chambers reached -73 degrees C (-100 F). That’s well within the range of conditions observed at the Phoenix landing site.

Researchers didn’t rely on their eyes or cameras to be sure liquid water was there. They used a technique called Raman scattering spectroscopy that involves shining lasers onto the surface and examining the reflected light. Different substances and states of matter have different reflective signatures.

The findings show how small amounts of liquid water could exist across a large swath of Mars’ surface and shallow subsurface, from its polar regions to its mid-latitudes, for several hours a day during the spring and early summer. Such a cycle could form gullies, Renno says, flowing, freezing, thawing and flowing again. Water could also form just beneath the surface.

Renno says the water wouldn’t necessarily need to stay liquid indefinitely for it to support microbial life now or have supported it in the past. Antarctic saltwater and lattices of brine-filled ice-combs have been found to harbor microbial organisms on Earth.

“Mars is the planet in our solar system that is most similar to Earth. Studies suggest that Mars used to be even more Earth-like in the past, with flowing water on the surface. By studying the formation of liquid water on Mars we can learn about possibilities of life outside Earth and look for resources for future missions,” said Erik Fischer, doctoral student in the Department of Atmospheric, Oceanic and Space Sciences (AOSS) at the University of Michigan and first author of the new paper.

The research is supported by NASA’s Exobiology Program. In addition to Renno and Fischer, other authors are Harvey Elliott, doctoral student in AOSS and Germán M. Martínez, research scientist at AOSS.

For additional images, visit

For more information, visit “Revisiting Mars: The search for liquid water and life on the planet next door”:

Notes for Journalists

Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this accepted article by clicking on this link:

Or, you may order a copy of the final paper by emailing your request to Nanci Bompey at Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release is under embargo.


“Experimental evidence for the formation of liquid saline water on Mars”

Erik Fischer, Germán M. Martínez, Harvey M. Elliott and Nilton O. Rennó: Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan, USA.

Contact information for the authors:
Erik Fischer: +1 (734) 647-9441,

AGU Contact:

Nanci Bompey
+1 (202) 777-7524

University of Michigan Contact:
Nicole Casal Moore
+1 (734) 647-7087

Nanci Bompey | American Geophysical Union
Further information:

Further reports about: Atmospheric Earth Geophysical Mars Martian deliquescence perchlorate salts spacecraft

More articles from Earth Sciences:

nachricht Rapid plankton growth in ocean seen as sign of carbon dioxide loading
27.11.2015 | Johns Hopkins University

nachricht Revealing glacier flow with animated satellite images
26.11.2015 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

Two decades of training students and experts in tracking infectious disease

27.11.2015 | Life Sciences

Coming to a monitor near you: A defect-free, molecule-thick film

27.11.2015 | Materials Sciences

More VideoLinks >>>