Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mangroves Protecting Corals from Climate Change

09.10.2014

A New Refuge for Corals

Certain types of corals, invertebrates of the sea that have been on Earth for millions of years, appear to have found a way to survive some of their most destructive threats by attaching to and growing under mangrove roots.


Boulder brain corals, for example, were found in abundance under the mangroves and were healthy, while many of those in unshaded areas a short distance away were bleaching.

Photo Credit: Caroline Rogers, USGS

Scientists with the U.S. Geological Survey and Eckerd College recently published research on a newly discovered refuge for reef-building corals in mangrove habitats of the U.S. Virgin Islands. More than 30 species of reef corals were found growing in Hurricane Hole, a mangrove habitat within the Virgin Islands Coral Reef National Monument in St. John.

Corals are animals that grow in colonies, forming reefs over time as old corals die and young corals grow upon the calcium carbonate or limestone skeletons of the old corals. Coral reefs make up some of the most biologically diverse habitats on Earth, and face many threats such as coastal pollution, dredging and disease. However, some of their most widespread threats involve warming ocean temperatures, solar radiation and increased ocean acidification.

It is from these threats that corals are finding refuge under the red mangroves of Hurricane Hole. Red mangroves, subtropical or tropical trees that colonize coastlines and brackish water habitats, have networks of prop roots that extend down toward the seafloor, and corals are growing on and under these roots.

How does it work?

Mangroves and their associated habitats and biological processes protect corals in a variety of ways.

  • The shade provided by mangroves protects the corals from high levels of solar radiation. This in turn, may reduce some of the stress caused by warming ocean waters.
  • A combination of chemical, biological and physical conditions around the mangrove habitats helps protect the corals by keeping acidity in the water below harmful levels. With oceans becoming more acidic due to the increased amount of carbon dioxide absorbed from the atmosphere, ocean animals like corals are threatened by rising acidity levels, which can slow coral growth and impact reef structure.
  • The shade provided by the mangroves helps deter coral bleaching, a condition that essentially starves coral and can, in prolonged cases, result in their death. With climate change, coral bleaching episodes are becoming more frequent around the world.

Bleaching occurs when corals lose their symbiotic algae. Most corals contain algae called zooxanthellae within their cells. The coral protects the algae, and provides the algae with the compounds they need for photosynthesis. The algae, in turn, produce oxygen, help the coral to remove waste products, and, most importantly, provide the coral with compounds the coral needs for everyday survival. When corals are under prolonged physiological stress, they may expel the algae, leading to the condition called bleaching.

When examining corals for this study, researchers found evidence of some species thriving under the mangroves while bleaching in unshaded areas outside of the mangroves.  Boulder brain corals, for example, were found in abundance under the mangroves and were healthy, while many of those in unshaded areas a short distance away were bleaching.

Adapting to Climate Change?

Organisms throughout the world are threatened as climate and other conditions change. If they can find ways to adapt, as it appears these coral have, they can continue to survive as part of an invaluable piece of this world’s intricate ecological puzzle. It is not known how many other mangrove areas in the world harbor such a high diversity of corals, as most people do not look for corals growing in these areas. No coral reefs have been identified to date that protect from rising ocean temperatures, acidification and increased solar radiation like these mangrove habitats in St. John.

Christian Quintero | Eurek Alert!
Further information:
http://www.usgs.gov/blogs/features/usgs_top_story/mangroves-protecting-corals-from-climate-change/?from=title

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>