Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mangroves Protecting Corals from Climate Change

09.10.2014

A New Refuge for Corals

Certain types of corals, invertebrates of the sea that have been on Earth for millions of years, appear to have found a way to survive some of their most destructive threats by attaching to and growing under mangrove roots.


Boulder brain corals, for example, were found in abundance under the mangroves and were healthy, while many of those in unshaded areas a short distance away were bleaching.

Photo Credit: Caroline Rogers, USGS

Scientists with the U.S. Geological Survey and Eckerd College recently published research on a newly discovered refuge for reef-building corals in mangrove habitats of the U.S. Virgin Islands. More than 30 species of reef corals were found growing in Hurricane Hole, a mangrove habitat within the Virgin Islands Coral Reef National Monument in St. John.

Corals are animals that grow in colonies, forming reefs over time as old corals die and young corals grow upon the calcium carbonate or limestone skeletons of the old corals. Coral reefs make up some of the most biologically diverse habitats on Earth, and face many threats such as coastal pollution, dredging and disease. However, some of their most widespread threats involve warming ocean temperatures, solar radiation and increased ocean acidification.

It is from these threats that corals are finding refuge under the red mangroves of Hurricane Hole. Red mangroves, subtropical or tropical trees that colonize coastlines and brackish water habitats, have networks of prop roots that extend down toward the seafloor, and corals are growing on and under these roots.

How does it work?

Mangroves and their associated habitats and biological processes protect corals in a variety of ways.

  • The shade provided by mangroves protects the corals from high levels of solar radiation. This in turn, may reduce some of the stress caused by warming ocean waters.
  • A combination of chemical, biological and physical conditions around the mangrove habitats helps protect the corals by keeping acidity in the water below harmful levels. With oceans becoming more acidic due to the increased amount of carbon dioxide absorbed from the atmosphere, ocean animals like corals are threatened by rising acidity levels, which can slow coral growth and impact reef structure.
  • The shade provided by the mangroves helps deter coral bleaching, a condition that essentially starves coral and can, in prolonged cases, result in their death. With climate change, coral bleaching episodes are becoming more frequent around the world.

Bleaching occurs when corals lose their symbiotic algae. Most corals contain algae called zooxanthellae within their cells. The coral protects the algae, and provides the algae with the compounds they need for photosynthesis. The algae, in turn, produce oxygen, help the coral to remove waste products, and, most importantly, provide the coral with compounds the coral needs for everyday survival. When corals are under prolonged physiological stress, they may expel the algae, leading to the condition called bleaching.

When examining corals for this study, researchers found evidence of some species thriving under the mangroves while bleaching in unshaded areas outside of the mangroves.  Boulder brain corals, for example, were found in abundance under the mangroves and were healthy, while many of those in unshaded areas a short distance away were bleaching.

Adapting to Climate Change?

Organisms throughout the world are threatened as climate and other conditions change. If they can find ways to adapt, as it appears these coral have, they can continue to survive as part of an invaluable piece of this world’s intricate ecological puzzle. It is not known how many other mangrove areas in the world harbor such a high diversity of corals, as most people do not look for corals growing in these areas. No coral reefs have been identified to date that protect from rising ocean temperatures, acidification and increased solar radiation like these mangrove habitats in St. John.

Christian Quintero | Eurek Alert!
Further information:
http://www.usgs.gov/blogs/features/usgs_top_story/mangroves-protecting-corals-from-climate-change/?from=title

More articles from Earth Sciences:

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

nachricht NASA flights gauge summer sea ice melt in the Arctic
25.07.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>