Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major flooding on the Mississippi River predicted to cause largest Gulf of Mexico dead zone ever recorded

15.06.2011
The Gulf of Mexico’s hypoxic zone is predicted to be the largest ever recorded due to extreme flooding of the Mississippi River this spring, according to an annual forecast by a team of NOAA-supported scientists from the Louisiana Universities Marine Consortium, Louisiana State University and the University of Michigan. The forecast is based on Mississippi River nutrient inputs compiled annually by the U.S. Geological Survey (USGS).

Scientists are predicting the area could measure between 8,500 and 9,421 square miles, or an area roughly the size of New Hampshire. If it does reach those levels it will be the largest since mapping of the Gulf “dead zone” began in 1985. The largest hypoxic zone measured to date occurred in 2002 and encompassed more than 8,400 square miles.

The average over the past five years is approximately 6,000 square miles of impacted waters, much larger than the 1,900 square miles which is the target goal set by the Gulf of Mexico/Mississippi River Watershed Nutrient Task Force. This collaboration between NOAA, USGS and university scientists facilitates understanding links between activities in the Mississippi River watershed and downstream impacts to the northern Gulf of Mexico. Long-term data sets on nutrient loads and the extent of the hypoxic zone have improved forecast models used by management agencies to understand the nutrient reductions required to reduce the size of the hypoxic zone.

Hypoxia is caused by excessive nutrient pollution, often from human activities such as agriculture that results in too little oxygen to support most marine life in bottom and near-bottom water. The hypoxic zone off the coast of Louisiana and Texas forms each summer and threatens valuable commercial and recreational Gulf fisheries. In 2009, the dockside value of commercial fisheries in the Gulf was $629 million. Nearly three million recreational fishers further contributed more than $1 billion to the Gulf economy taking 22 million fishing trips.

“This ecological forecast is a good example of NOAA applied science,” said Jane Lubchenco, Ph.D., under secretary of commerce for oceans and atmosphere and NOAA administrator. “While there is some uncertainty regarding the size, position and timing of this year’s hypoxic zone in the Gulf, the forecast models are in overall agreement that hypoxia will be larger than we have typically seen in recent years.”

During May 2011 stream-flow rates in the Mississippi and Atchafalaya Rivers were nearly twice that of normal conditions. This significantly increased the amount of nitrogen transported by the rivers into the Gulf. According to USGS estimates, 164,000 metric tons of nitrogen (in the form of nitrite plus nitrate) were transported by the Mississippi and Atchafalaya Rivers to the northern Gulf. The amount of nitrogen transported to the Gulf in May 2011 was 35 percent higher than average May nitrogen loads estimated in the last 32 years.

"The USGS monitoring network and modeling activities for water quantity and quality helps us 'connect the dots' to see how increased nutrient run-off in the Mississippi watershed during a historic spring flood event impacts the health of the ocean many hundreds of miles away," said Marcia McNutt, Ph.D., USGS director. "This work on Gulf hypoxia is a great example of interagency teamwork between NOAA and USGS to work across the land-sea boundary."

Coastal and water resource managers nationwide require new and better integrated information and services to adapt to the uncertainty of future climate and land-use changes, an aging water delivery infrastructure, and an increasing demand on limited resources. NOAA and USGS, as well as the U.S. Army Corps of Engineers, have signed an agreement that will further facilitate collaboration in the future. These agencies, with complementary missions in water science, observation, prediction and management, have formed this partnership to unify their commitment to address the nation’s water resources information and management needs.

This year’s forecast is just one example of NOAA’s growing ecological forecasting capabilities, supported by both NOAA and USGS science, which allow for the protection of valuable resources using scientific, ecosystem-based approaches.

The actual size of the 2011 hypoxic zone will be released following a NOAA-supported monitoring survey led by the Louisiana Universities Marine Consortium between July 25 and August 6. Collecting these data is an annual requirement of the Mississippi River/Gulf of Mexico Watershed Nutrient Task Force Action Plan.

NOAA has been funding investigations and forecast development for the dead zone in the Gulf of Mexico since 1990 and currently oversees the two national hypoxia programs authorized by the Harmful Algal Bloom and Hypoxia Research and Control Act.

NOAA’s mission is to understand and predict changes in the Earth's environment, from the depths of the ocean to the surface of the sun, and to conserve and manage our coastal and marine resources. Find us on Facebook.

USGS provides science for a changing world. Visit USGS.gov, and follow us on Twitter @USGS and our other social media channels.

Ben Sherman | EurekAlert!
Further information:
http://www.noaa.gov

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>