Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magmatically triggered slow earthquake discovered at Kilauea Volcano, Hawaii

02.09.2008
From June 17-19th 2007, Kilauea experienced a new dike intrusion, where magma rapidly moved from a storage reservoir beneath the summit into the east rift zone and extended the rift zone by as much as 1 meter.

Researchers from the University of Hawaii at Manoa (UHM), Scripps Institution of Oceanography at UC San Diego, and the U.S. Geological Survey (USGS) Hawaiian Volcano Observatory have now discovered that the 2007 dike intrusion was not the only action going on: the dike also triggered a "slow earthquake" on Kilauea's south flank, demonstrating how magmatism and earthquake faulting at Kilauea can be tightly connected. The research findings will be published in the Friday, August 29th edition of the prestigious journal Science.

Slow earthquakes are a special type of earthquake where fault rupture occurs too slowly (over periods of days to months) to produce any felt shaking. Slow earthquakes of magnitude 5.5-5.7 have been previously found to periodically occur on the flanks of Kilauea, and have been identified by ground motion data on Global Positioning System (GPS) stations. A general understanding of slow earthquake initiation, however, is still unresolved.

This new study is the first observation of slow earthquake that was triggered by a dike intrusion. A team lead by Associate Researcher Ben Brooks of the School of Ocean and Earth Science and Technology (SOEST) at UHM used a combination of satellite and GPS data to demonstrate that the 2007 slow earthquake began about 15-20 hours after the start of the dike intrusion, and that the slow earthquake was accompanied by elevated rates of small magnitude microearthquakes, a pattern identical to what has been seen from past slow earthquakes. The authors also performed stress modeling to demonstrate how the processes associated with the volcanism at Kilauea contributes to the existence of the observed slow earthquakes. The results suggest that both extrinsic (intrusion-triggering on short time scales) and intrinsic (secular deformation on long time scales) processes produce slow earthquakes at Kilauea.

"Because of the large deformation signals from the dike intrusion, we needed to do some detailed detective work to prove the existence of this slow earthquake." says Brooks, an associate researcher in the Hawaii Institute for Geophysics and Planetology (HIGP) at UHM. "We used state-of-the-art InSAR satellite data to constrain the dike source and that allowed us to demonstrate the existence of the slow earthquake motions recorded by the GPS stations on Kilauea's flank."

To determine the presence of this slow earthquake, a multitude of measuring tools were required. "A dike intrusion could be seen with the seismic monitoring network, the tiltmeters and the GPS network, but these slow earthquakes can only be seen with the GPS network," says James Foster, an assistant researcher with HIGP, and a co-author in the study.

"These slow earthquakes are an interesting phenomenon that has only been studied within the last decade and we're still trying to figure out how they fall into the bigger picture of earthquakes, says Cecily Wolfe, also an associate professor in HIGP and another co-author. "They're definitely a part of the earthquakes cycle, and trying to understand how they relate to other earthquakes and how they may be generated and triggered will give us greater insights into how predicable earthquakes are."

Tara Hicks Johnson | EurekAlert!
Further information:
http://www.hawaii.edu

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>