Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magmatically triggered slow earthquake discovered at Kilauea Volcano, Hawaii

02.09.2008
From June 17-19th 2007, Kilauea experienced a new dike intrusion, where magma rapidly moved from a storage reservoir beneath the summit into the east rift zone and extended the rift zone by as much as 1 meter.

Researchers from the University of Hawaii at Manoa (UHM), Scripps Institution of Oceanography at UC San Diego, and the U.S. Geological Survey (USGS) Hawaiian Volcano Observatory have now discovered that the 2007 dike intrusion was not the only action going on: the dike also triggered a "slow earthquake" on Kilauea's south flank, demonstrating how magmatism and earthquake faulting at Kilauea can be tightly connected. The research findings will be published in the Friday, August 29th edition of the prestigious journal Science.

Slow earthquakes are a special type of earthquake where fault rupture occurs too slowly (over periods of days to months) to produce any felt shaking. Slow earthquakes of magnitude 5.5-5.7 have been previously found to periodically occur on the flanks of Kilauea, and have been identified by ground motion data on Global Positioning System (GPS) stations. A general understanding of slow earthquake initiation, however, is still unresolved.

This new study is the first observation of slow earthquake that was triggered by a dike intrusion. A team lead by Associate Researcher Ben Brooks of the School of Ocean and Earth Science and Technology (SOEST) at UHM used a combination of satellite and GPS data to demonstrate that the 2007 slow earthquake began about 15-20 hours after the start of the dike intrusion, and that the slow earthquake was accompanied by elevated rates of small magnitude microearthquakes, a pattern identical to what has been seen from past slow earthquakes. The authors also performed stress modeling to demonstrate how the processes associated with the volcanism at Kilauea contributes to the existence of the observed slow earthquakes. The results suggest that both extrinsic (intrusion-triggering on short time scales) and intrinsic (secular deformation on long time scales) processes produce slow earthquakes at Kilauea.

"Because of the large deformation signals from the dike intrusion, we needed to do some detailed detective work to prove the existence of this slow earthquake." says Brooks, an associate researcher in the Hawaii Institute for Geophysics and Planetology (HIGP) at UHM. "We used state-of-the-art InSAR satellite data to constrain the dike source and that allowed us to demonstrate the existence of the slow earthquake motions recorded by the GPS stations on Kilauea's flank."

To determine the presence of this slow earthquake, a multitude of measuring tools were required. "A dike intrusion could be seen with the seismic monitoring network, the tiltmeters and the GPS network, but these slow earthquakes can only be seen with the GPS network," says James Foster, an assistant researcher with HIGP, and a co-author in the study.

"These slow earthquakes are an interesting phenomenon that has only been studied within the last decade and we're still trying to figure out how they fall into the bigger picture of earthquakes, says Cecily Wolfe, also an associate professor in HIGP and another co-author. "They're definitely a part of the earthquakes cycle, and trying to understand how they relate to other earthquakes and how they may be generated and triggered will give us greater insights into how predicable earthquakes are."

Tara Hicks Johnson | EurekAlert!
Further information:
http://www.hawaii.edu

More articles from Earth Sciences:

nachricht The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships
19.09.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

nachricht FotoQuest GO: Citizen science campaign targets land-use change in Austria
19.09.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>