Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Magmatically triggered slow earthquake discovered at Kilauea Volcano, Hawaii

From June 17-19th 2007, Kilauea experienced a new dike intrusion, where magma rapidly moved from a storage reservoir beneath the summit into the east rift zone and extended the rift zone by as much as 1 meter.

Researchers from the University of Hawaii at Manoa (UHM), Scripps Institution of Oceanography at UC San Diego, and the U.S. Geological Survey (USGS) Hawaiian Volcano Observatory have now discovered that the 2007 dike intrusion was not the only action going on: the dike also triggered a "slow earthquake" on Kilauea's south flank, demonstrating how magmatism and earthquake faulting at Kilauea can be tightly connected. The research findings will be published in the Friday, August 29th edition of the prestigious journal Science.

Slow earthquakes are a special type of earthquake where fault rupture occurs too slowly (over periods of days to months) to produce any felt shaking. Slow earthquakes of magnitude 5.5-5.7 have been previously found to periodically occur on the flanks of Kilauea, and have been identified by ground motion data on Global Positioning System (GPS) stations. A general understanding of slow earthquake initiation, however, is still unresolved.

This new study is the first observation of slow earthquake that was triggered by a dike intrusion. A team lead by Associate Researcher Ben Brooks of the School of Ocean and Earth Science and Technology (SOEST) at UHM used a combination of satellite and GPS data to demonstrate that the 2007 slow earthquake began about 15-20 hours after the start of the dike intrusion, and that the slow earthquake was accompanied by elevated rates of small magnitude microearthquakes, a pattern identical to what has been seen from past slow earthquakes. The authors also performed stress modeling to demonstrate how the processes associated with the volcanism at Kilauea contributes to the existence of the observed slow earthquakes. The results suggest that both extrinsic (intrusion-triggering on short time scales) and intrinsic (secular deformation on long time scales) processes produce slow earthquakes at Kilauea.

"Because of the large deformation signals from the dike intrusion, we needed to do some detailed detective work to prove the existence of this slow earthquake." says Brooks, an associate researcher in the Hawaii Institute for Geophysics and Planetology (HIGP) at UHM. "We used state-of-the-art InSAR satellite data to constrain the dike source and that allowed us to demonstrate the existence of the slow earthquake motions recorded by the GPS stations on Kilauea's flank."

To determine the presence of this slow earthquake, a multitude of measuring tools were required. "A dike intrusion could be seen with the seismic monitoring network, the tiltmeters and the GPS network, but these slow earthquakes can only be seen with the GPS network," says James Foster, an assistant researcher with HIGP, and a co-author in the study.

"These slow earthquakes are an interesting phenomenon that has only been studied within the last decade and we're still trying to figure out how they fall into the bigger picture of earthquakes, says Cecily Wolfe, also an associate professor in HIGP and another co-author. "They're definitely a part of the earthquakes cycle, and trying to understand how they relate to other earthquakes and how they may be generated and triggered will give us greater insights into how predicable earthquakes are."

Tara Hicks Johnson | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Oasis of life in the ice-covered central Arctic
24.10.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>