Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Likely near-simultaneous earthquakes complicate seismic hazard planning for Italy

02.09.2014

Before the shaking from one earthquake ends, shaking from another might begin, amplifying the effect of ground motion. Such sequences of closely timed, nearly overlapping, consecutive earthquakes account for devastating seismic events in Italy's history and should be taken into account when building new structures, according to research published in the September issue of the journal Seismological Research Letters (SRL).

"It's very important to consider this scenario of earthquakes, occurring possibly seconds apart, one immediately after another," said co-author Anna Tramelli, a seismologist with the Istituto Nazionale di Geofisica e Vulcanologia in Naples, Italy.

"Two consecutive mainshocks of magnitude 5.8 could have the effect of a magnitude 6 earthquake in terms of energy release. But the effect on a structure could be even larger than what's anticipated from a magnitude 6 earthquake due to the longer duration of shaking that would negatively impact the resilience of a structure."

Historically, multiple triggered mainshocks, with time delays of seconds to days, have caused deadly earthquakes along the Italian Apennine belt, a series of central mountain ranges extending the length of Italy.

The 1997-98 Umbria-March seismic sequence numbered six mainshocks of moderate magnitude, ranging M 5.2 – 6.0. The 1980 Irpinia earthquakes included a sequence of three events, occurring at intervals within 20 seconds of each other. The 2012 Emilia sequence started with an M 5.9 event, with the second largest mainshock (M 5.8) occurring nine days later, and included more than 2000 aftershocks.

In this study, Tramelli and her colleagues used the recorded waveforms from the 2012 Emilia seismic sequence to simulate a seismic sequence that triggered end-to-end earthquakes along adjacent fault patches, observing the affect of continuous ruptures on the resulting ground motion and, consequently, its impact on critical structures, such as dams, power plants, hospitals and bridges.

"We demonstrated that consecutively triggered earthquakes can enhance the amount of energy produced by the ruptures, exceeding the design specifications expected for buildings in moderate seismic hazard zones," said Tramelli, whose analysis suggests that the shaking from multiple magnitude 5.0 earthquakes would be significantly greater than from an individual magnitude 5.0 event.

And back-to-back earthquakes are more than theoretical, say the authors, who note that this worst-case scenario has happened at least once in Italy's recent history. Previous studies identified three sub-events at intervals of 20 seconds in the seismic signals recorded during the 1980 Irpinia earthquake sequence, whose shared ground motion caused more than 3000 deaths and significant damage to structures.

A "broader and modern approach" to seismic risk mitigation in Italy, suggest the authors, would incorporate the scenario of multiple triggered quakes, along with the present understanding of active fault locations, mechanisms and interaction.

###

"The 2012 Emilia (Italy) quasi-consecutive triggered mainshocks: implications for seismic hazard," will appear in the September issue of SRL, which is published by the Seismological Society of America.

Nan Broadbent | Eurek Alert!

More articles from Earth Sciences:

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht What makes corals sick?
11.12.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

Large-scale battery storage system in field trial

11.12.2017 | Power and Electrical Engineering

See, understand and experience the work of the future

11.12.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>