Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Life in the collision zone: Mountains trigger biodiversity

28.02.2013
For a long time it was assumed that stable environments lead to higher species richness, as they allow speciation.

New research suggests, however, that geologically dynamic regions sustain higher biodiversity. Young mountainous areas offer new habitats, ecological gradients and unoccupied niches in which new species evolve.


Landscape in the Peruvian Andes.
© Bas Wallet

Scientists from the Universities of Amsterdam, Gothenburg and Frankfurt, the Senckenberg Gesellschaft für Naturforschung and the Biodiversity and Climate Research Centre (BiK-F) advocate in today's issue of the journal Nature Geoscience for a closer cooperation between life and earth sciences.

Long-term environmental stability does not correlate with species richness and biodiversity. Rather, recent studies indicate that unstable, changing habitats open new avenues for biodiversity. Especially the uplift of mountain ranges plays a major role: It creates a multitude of dynamic habitats with new climatic and physical conditions and ecological gradients that are available to be colonized by emerging species.

Mountain ranges: Barriers and bridges at the same time

Mountain ranges have various direct impacts on biodiversity: While they prevent the spread of some organisms, they represent bridges between separate habitats for others. Uplifting mountains divide previously continuous habitats, or connect land masses and create new paths for spreading species. Mountainous regions are also home to a variety of species adapted to environmental niches – and these species seem to be less affected by changing climatic conditions than lowland species that occupy a large range: The former only need to move short distances to meet suitable temperature conditions. Thus, due to their high biodiversity, a result of high speciation and low extinction, mountains act as “biodiversity pumps”, feeding the rest of the continents.

In constant flux: formation of new habitats

Mountains also exert indirect influence on biodiversity. South America’s Amazon basin, for example, immensely rich in biodiversity, would not exist without the Andes. Following the uplift of the mountain range, the Amazon basin formed. The runoff from the Andes and the nutrient-rich sediments provided by constant Andean weathering of rocks form the basis for the unique species richness of the Amazon region. The impact of the mountains even extends far into the Atlantic Ocean: the Amazon Plume, sediments transported by the river which are clearly visible on satellite images, creates geochemical conditions entirely different from neighboring ocean zones. And this is not a unique case: Prof. Dr. Andreas Mulch (BiK-F, SGN and Goethe University), one of the authors points out: "This continental impact of a mountain region as a driver of evolution is not specific to the Andes. It also applies to the Himalayas or the Alps.
Pioneer Alfred Wegener: call for cooperation between earth and life sciences

"Already Alfred Wegener, when he presented his theory of continental drift at the Senckenberg Museum, advocated an interdisciplinary approach," says Prof. Dr. Volker Mosbrugger, Director General of the Senckenberg Gesellschaft für Naturforschung and co-author of the paper. "But only today, a hundred years later, this cooperation is finally being realized." To understand formation and vanishing of global biodiversity, earth and life sciences but must join forces. A growing scientific interest in interdisciplinary projects, new molecular techniques and advanced reconstructions of Earth surface processes enable scientists to explain more comprehensively, how geology and climate interact to influence evolutionary processes. In their comment to the journal Nature Geoscience, the scientists argue that research should embrace these joint approaches, since comprehensive understanding of global biodiversity is only to be achieved if the interactions of geo- and biosphere are addressed by interdisciplinary efforts.

Publication:
Hoorn, C., Mosbrugger, V., Mulch, A. & A. Antonelli: Biodiversity from mountain building. Nature Geoscience, doi:10.1038/ngeo1742

For further information please contact:

Prof. Dr. Andreas Mulch
LOEWE Biodiversity and Climate Research Centre (BiK-F)
Tel. +49 (0)69 7542 1881
andreas.mulch@senckenberg.de

or

Dr. Julia Krohmer
LOEWE Biodiversity and Climate Research Centre (BiK-F),
Transfer office
Phone +49 (0)69 7542 1837
julia.krohmer@senckenberg.de

LOEWE Biodiversität und Klima Forschungszentrum, Frankfurt am Main
With the objective of analysis the complex interactions between biodiversity and climate through a wide range of methods, the Biodiversität und Klima Forschungszentrum [Biodiversity and Climate Research Centre] (BiK‐F) has been funded since 2008 within the context of the Landes‐Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz (LOEWE) of the Land of Hessen. The Senckenberg Gesellschaft für Naturforschung and Goethe University in Frankfurt as well as other, directly involved partners, co‐operate closely with regional, national and international institutions in the fields of science, resource and environmental management, in order to develop projections for the future and scientific recommendations for sustainable action.

Sabine Wendler | Senckenberg
Further information:
http://www.bik‐f.de
http://www.senckenberg.de

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>