Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Life in the collision zone: Mountains trigger biodiversity

28.02.2013
For a long time it was assumed that stable environments lead to higher species richness, as they allow speciation.

New research suggests, however, that geologically dynamic regions sustain higher biodiversity. Young mountainous areas offer new habitats, ecological gradients and unoccupied niches in which new species evolve.


Landscape in the Peruvian Andes.
© Bas Wallet

Scientists from the Universities of Amsterdam, Gothenburg and Frankfurt, the Senckenberg Gesellschaft für Naturforschung and the Biodiversity and Climate Research Centre (BiK-F) advocate in today's issue of the journal Nature Geoscience for a closer cooperation between life and earth sciences.

Long-term environmental stability does not correlate with species richness and biodiversity. Rather, recent studies indicate that unstable, changing habitats open new avenues for biodiversity. Especially the uplift of mountain ranges plays a major role: It creates a multitude of dynamic habitats with new climatic and physical conditions and ecological gradients that are available to be colonized by emerging species.

Mountain ranges: Barriers and bridges at the same time

Mountain ranges have various direct impacts on biodiversity: While they prevent the spread of some organisms, they represent bridges between separate habitats for others. Uplifting mountains divide previously continuous habitats, or connect land masses and create new paths for spreading species. Mountainous regions are also home to a variety of species adapted to environmental niches – and these species seem to be less affected by changing climatic conditions than lowland species that occupy a large range: The former only need to move short distances to meet suitable temperature conditions. Thus, due to their high biodiversity, a result of high speciation and low extinction, mountains act as “biodiversity pumps”, feeding the rest of the continents.

In constant flux: formation of new habitats

Mountains also exert indirect influence on biodiversity. South America’s Amazon basin, for example, immensely rich in biodiversity, would not exist without the Andes. Following the uplift of the mountain range, the Amazon basin formed. The runoff from the Andes and the nutrient-rich sediments provided by constant Andean weathering of rocks form the basis for the unique species richness of the Amazon region. The impact of the mountains even extends far into the Atlantic Ocean: the Amazon Plume, sediments transported by the river which are clearly visible on satellite images, creates geochemical conditions entirely different from neighboring ocean zones. And this is not a unique case: Prof. Dr. Andreas Mulch (BiK-F, SGN and Goethe University), one of the authors points out: "This continental impact of a mountain region as a driver of evolution is not specific to the Andes. It also applies to the Himalayas or the Alps.
Pioneer Alfred Wegener: call for cooperation between earth and life sciences

"Already Alfred Wegener, when he presented his theory of continental drift at the Senckenberg Museum, advocated an interdisciplinary approach," says Prof. Dr. Volker Mosbrugger, Director General of the Senckenberg Gesellschaft für Naturforschung and co-author of the paper. "But only today, a hundred years later, this cooperation is finally being realized." To understand formation and vanishing of global biodiversity, earth and life sciences but must join forces. A growing scientific interest in interdisciplinary projects, new molecular techniques and advanced reconstructions of Earth surface processes enable scientists to explain more comprehensively, how geology and climate interact to influence evolutionary processes. In their comment to the journal Nature Geoscience, the scientists argue that research should embrace these joint approaches, since comprehensive understanding of global biodiversity is only to be achieved if the interactions of geo- and biosphere are addressed by interdisciplinary efforts.

Publication:
Hoorn, C., Mosbrugger, V., Mulch, A. & A. Antonelli: Biodiversity from mountain building. Nature Geoscience, doi:10.1038/ngeo1742

For further information please contact:

Prof. Dr. Andreas Mulch
LOEWE Biodiversity and Climate Research Centre (BiK-F)
Tel. +49 (0)69 7542 1881
andreas.mulch@senckenberg.de

or

Dr. Julia Krohmer
LOEWE Biodiversity and Climate Research Centre (BiK-F),
Transfer office
Phone +49 (0)69 7542 1837
julia.krohmer@senckenberg.de

LOEWE Biodiversität und Klima Forschungszentrum, Frankfurt am Main
With the objective of analysis the complex interactions between biodiversity and climate through a wide range of methods, the Biodiversität und Klima Forschungszentrum [Biodiversity and Climate Research Centre] (BiK‐F) has been funded since 2008 within the context of the Landes‐Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz (LOEWE) of the Land of Hessen. The Senckenberg Gesellschaft für Naturforschung and Goethe University in Frankfurt as well as other, directly involved partners, co‐operate closely with regional, national and international institutions in the fields of science, resource and environmental management, in order to develop projections for the future and scientific recommendations for sustainable action.

Sabine Wendler | Senckenberg
Further information:
http://www.bik‐f.de
http://www.senckenberg.de

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>