Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lab researcher discovers the green in Greenland

18.04.2014

At one point in history, Greenland was actually green and not a country covered in ice.

An international team of researchers, including a former scientist from Lawrence Livermore National Laboratory, has discovered that ancient dirt in Greenland was cryogenically frozen for millions of years under nearly two miles of ice.


Former LLNL researcher Dylan Rood performs geology field work in eastern Greenland. Rood took dirt samples and analyzed them to determine that an ancient landscape millions of years old is preserved underneath the Greenland Ice Sheet.

More than 2.5 million years ago. Greenland looked like the green Alaskan tundra, before it was covered by the second largest body of ice on Earth.

The ancient dirt under the Greenland ice sheet helps to unravel an important mystery surrounding climate change: How did big ice sheets melt and grow in response to changes in temperature?

The research appears in the April 17 edition of Science Express.

"Our study demonstrates that the ice in the center of the Greenland Ice Sheet has remained stable during the climate variations of the last millions of years," said Dylan Rood, a former Lawrence Livermore scientist. "Our study adds to a body of evidence that shows how major ice sheets reacted in the past to warming, providing insights into what they could do again in the future."

An ancient landscape millions of years old is preserved underneath the Greenland Ice Sheet. The ancient dirt contains extremely large amounts of meteoric beryllium-10, which means that it had to have once sat at Earth's surface for a long time before Greenland was covered in ice. This type of beryllium-10 is produced by cosmic rays in the atmosphere and literally rains out onto the Earth's surface, where it gets stuck to soil.

The more meteoric beryllium-10 atoms in the dirt, the longer it sat at the surface.

"It is amazing that a huge ice sheet, nearly two miles thick and the second largest body of ice on Earth, didn't scrape it away," said Rood, who now works at the Scottish Universities Environmental Research Centre (SUERC).

Rood counted how many beryllium-10 atoms were in the dirt using the Center for Accelerator Mass Spectrometry (CAMS) at LLNL.

"The trick, of course, is isolating the extremely rare beryllium-10 atoms from the million billion beryllium-9 atoms in our samples," Rood said. "I'm always amazed to see how a pinhead-sized sample from dirt can be ionized and accelerated through the maze of beamlines in CAMS and then go exactly where it needs to go in order to allow us to count its individual atoms. The CAMS allows us to count these very rare beryllium-10 atoms, which is analogous to finding the one grain of sand that is different than the rest on a beach."

In the past five years or so, important advances in the ultra-sensitive and high-precision measurement of isotopes using AMS technology have revolutionized the ability of Earth scientists to understand how ice sheets have responded to past climate change.

Other institutions involved in the research include: University of Vermont, Idaho State University and University of Wyoming.

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne M Stark | Eurek Alert!

Further reports about: Accelerator Earth Environmental Greenland LLNL Laboratory Security Spectrometry temperature

More articles from Earth Sciences:

nachricht More than 100 years of flooding and erosion in 1 event
28.03.2017 | Geological Society of America

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>