Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Keeping an Eye on the Universe

Astronomers from the California Institute of Technology and the University of Arizona have released the largest data set ever collected that documents the brightening and dimming of stars and other celestial objects ­ 200 million in total.

The University of Arizona's Catalina Sky Survey keeps a watchful eye on asteroids that might cross the Earth's path. A byproduct of that effort is the largest database compiling the brightnesses of 200 million objects in the universe, including supernovae and stars torn up by super-massive black holes.

The night sky is filled with objects such as asteroids that dash across the sky and others ­ such as exploding stars and variable stars ­ that flash, dim, and brighten. Studying such phenomena can help astronomers better understand the evolution of stars, massive black holes in the centers of galaxies, and the structure of the Milky Way.

These types of objects also were essential for the recent discovery of dark energy ­ the mysterious energy that dominates the expansion of the universe ­ that earned last year's Nobel Prize.

Using images obtained by the UA's asteroid-hunting Catalina Sky Survey, the Catalina Real-Time Transient Survey, or CRTS, lets CalTech astronomers systematically scan the heavens for these dynamic objects, resulting in an unprecedented data set that will allow scientists worldwide to pursue new research.

"Exploring variable objects and transient phenomena like stellar explosions is one of the most vibrant and growing research areas in astrophysics," said S. George Djorgovski, professor of astronomy at Caltech and principal investigator on the CRTS. "In many cases, this yields unique information needed to understand these objects."

The new data set is based on observations taken with the 0.7-meter telescope on Mt. Bigelow in Arizona. The observations were part of the Catalina Sky Survey, a search for Near-Earth Objects, or NEOs ­ asteroids that may pose a threat to Earth ­ conducted by astronomers at the UA.

By repeatedly taking pictures of large swaths of the sky and comparing these images to previous ones, the CRTS is able to monitor the brightness of about half-billion objects, allowing it to search for those that dramatically brighten or dim. In this way, the CRTS team identified tens of thousands of variables, maximizing the science that can be gleaned from the original data.

The new data set contains the so-called brightness histories of a total of
200 million stars and other objects, incorporating more than 20 billion independent measurements.

"This set of objects is an order of magnitude larger than the largest previously available data sets of their kind," said Andrew Drake, a staff scientist at Caltech and lead author on a poster presented at the meeting of the American Astronomical Society in Austin on Jan. 12.

"It will enable many interesting studies by the entire astronomical community."

One of the unique features of the survey, Drake said, is that it emphasizes an open-data philosophy. "We discover transient events and publish them electronically in real time, so that anyone can follow them and make additional discoveries."

"It is a good example of scientific-data sharing and reuse," Djorgovski added. "We hope to set an example of how data-intensive science should be done in the 21st century."

The data set includes more than 1,000 exploding stars called supernovae, including many unusual and novel types, as well as hundreds of so-called cataclysmic variables, pairs of stars in which one spills matter onto another, called a white dwarf; tens of thousands of other variable stars; and dwarf novae, which are binary stars that dramatically change in brightness.

"We take hundreds of images every night from each of our telescopes as we search for hazardous asteroids," said Edward Beshore, principal investigator of the UA's asteroid-hunting CSS. "As far back as 2005, we were asking if these data could be useful to the community of astronomers.

We are delighted that we could forge this partnership. In my estimation, it has been a great success and is a superb example of finding ways to get greater value from taxpayers' investments in basic science."

The team said it soon plans to release additional data taken with a 1.5-meter telescope on Mt. Lemmon in Arizona and a 0.5-meter telescope in Siding Spring in Australia.

In addition to Djorgovski, Drake and Beshore, the team includes staff scientist Ashish Mahabal, computational scientist Matthew Graham, postdoctoral scholar Ciro Donalek and research scientist Roy Williams from Caltech.

Researchers from other institutions include Steve Larson, Andrea Boattini, Alex Gibbs, Al Grauer, Rik Hill and Richard Kowalski from the UA; Mauricio Catelan from Universidad Catholica in Chile; Eric Christensen from the Gemini Observatory in Hawaii; and Jose Prieto from Princeton University.

The Caltech research is supported by the National Science Foundation. The work done at the UA is supported by NASA.

Catalina Sky Survey:
Catalina Real-Time Transient Survey:
Edward Beshore
Lunar and Planetary Laboratory and Steward Observatory The University of Arizona
Deborah Williams-Hedges
California Institute of Technology
Daniel Stolte
University Communications
The University of Arizona

Daniel Stolte | University of Arizona
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>