Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keeping an Eye on the Universe

16.01.2012
Astronomers from the California Institute of Technology and the University of Arizona have released the largest data set ever collected that documents the brightening and dimming of stars and other celestial objects ­ 200 million in total.

The University of Arizona's Catalina Sky Survey keeps a watchful eye on asteroids that might cross the Earth's path. A byproduct of that effort is the largest database compiling the brightnesses of 200 million objects in the universe, including supernovae and stars torn up by super-massive black holes.

The night sky is filled with objects such as asteroids that dash across the sky and others ­ such as exploding stars and variable stars ­ that flash, dim, and brighten. Studying such phenomena can help astronomers better understand the evolution of stars, massive black holes in the centers of galaxies, and the structure of the Milky Way.

These types of objects also were essential for the recent discovery of dark energy ­ the mysterious energy that dominates the expansion of the universe ­ that earned last year's Nobel Prize.

Using images obtained by the UA's asteroid-hunting Catalina Sky Survey, the Catalina Real-Time Transient Survey, or CRTS, lets CalTech astronomers systematically scan the heavens for these dynamic objects, resulting in an unprecedented data set that will allow scientists worldwide to pursue new research.

"Exploring variable objects and transient phenomena like stellar explosions is one of the most vibrant and growing research areas in astrophysics," said S. George Djorgovski, professor of astronomy at Caltech and principal investigator on the CRTS. "In many cases, this yields unique information needed to understand these objects."

The new data set is based on observations taken with the 0.7-meter telescope on Mt. Bigelow in Arizona. The observations were part of the Catalina Sky Survey, a search for Near-Earth Objects, or NEOs ­ asteroids that may pose a threat to Earth ­ conducted by astronomers at the UA.

By repeatedly taking pictures of large swaths of the sky and comparing these images to previous ones, the CRTS is able to monitor the brightness of about half-billion objects, allowing it to search for those that dramatically brighten or dim. In this way, the CRTS team identified tens of thousands of variables, maximizing the science that can be gleaned from the original data.

The new data set contains the so-called brightness histories of a total of
200 million stars and other objects, incorporating more than 20 billion independent measurements.

"This set of objects is an order of magnitude larger than the largest previously available data sets of their kind," said Andrew Drake, a staff scientist at Caltech and lead author on a poster presented at the meeting of the American Astronomical Society in Austin on Jan. 12.

"It will enable many interesting studies by the entire astronomical community."

One of the unique features of the survey, Drake said, is that it emphasizes an open-data philosophy. "We discover transient events and publish them electronically in real time, so that anyone can follow them and make additional discoveries."

"It is a good example of scientific-data sharing and reuse," Djorgovski added. "We hope to set an example of how data-intensive science should be done in the 21st century."

The data set includes more than 1,000 exploding stars called supernovae, including many unusual and novel types, as well as hundreds of so-called cataclysmic variables, pairs of stars in which one spills matter onto another, called a white dwarf; tens of thousands of other variable stars; and dwarf novae, which are binary stars that dramatically change in brightness.

"We take hundreds of images every night from each of our telescopes as we search for hazardous asteroids," said Edward Beshore, principal investigator of the UA's asteroid-hunting CSS. "As far back as 2005, we were asking if these data could be useful to the community of astronomers.

We are delighted that we could forge this partnership. In my estimation, it has been a great success and is a superb example of finding ways to get greater value from taxpayers' investments in basic science."

The team said it soon plans to release additional data taken with a 1.5-meter telescope on Mt. Lemmon in Arizona and a 0.5-meter telescope in Siding Spring in Australia.

In addition to Djorgovski, Drake and Beshore, the team includes staff scientist Ashish Mahabal, computational scientist Matthew Graham, postdoctoral scholar Ciro Donalek and research scientist Roy Williams from Caltech.

Researchers from other institutions include Steve Larson, Andrea Boattini, Alex Gibbs, Al Grauer, Rik Hill and Richard Kowalski from the UA; Mauricio Catelan from Universidad Catholica in Chile; Eric Christensen from the Gemini Observatory in Hawaii; and Jose Prieto from Princeton University.

The Caltech research is supported by the National Science Foundation. The work done at the UA is supported by NASA.

LINKS:
Catalina Sky Survey: http://www.lpl.arizona.edu/css
Catalina Real-Time Transient Survey: http://crts.caltech.edu
CONTACTS:
Edward Beshore
Lunar and Planetary Laboratory and Steward Observatory The University of Arizona
520-621-4900
ebeshore@lpl.arizona.edu
Deborah Williams-Hedges
California Institute of Technology
debwms@caltech.edu
626-395-3227
Daniel Stolte
University Communications
The University of Arizona
520-626-4402
stolte@email.arizona.edu

Daniel Stolte | University of Arizona
Further information:
http://www.arizona.edu

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>