Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Japan Earthquake Appears to Increase Quake Risk Elsewhere in the Country

26.05.2011
Japan’s recent magnitude 9.0 earthquake, which triggered a devastating tsunami, relieved stress along part of the quake fault but also has contributed to the build up of stress in other areas, putting some of the country at risk for up to years of sizeable aftershocks and perhaps new main shocks, scientists say.

After studying data from Japan’s extensive seismic network, researchers from the Woods Hole Oceanographic Institution (WHOI), Kyoto University and the U.S. Geological Survey (USGS) have identified several areas at risk from the quake, Japan’s largest ever, which already has triggered a large number of aftershocks.


Map showing the 11 March 2011 magnitude 9.0 off Tohoku mainshock and 166 aftershocks of magnitude 5.5 and greater until May 20. Warmer color indicates more recent events. Larger symbol indicates greater quake magnitude.
(Modified from figure created by the U.S. Geological Survey)

Data from the magnitude 9.0 Tohoku earthquake on March 11 has brought scientists a small but perceptible step closer to a better assessment of future seismic risk in specific regions, said Shinji Toda of Kyoto University, a lead author of the study. “Even though we cannot forecast precisely, we can explain the mechanisms involved in such quakes to the public,” he said. Still, he added, the findings do bring scientists “a little bit closer” to being able to forecast aftershocks.

“Research over the past two decades has shown that earthquakes interact in ways never before imagined,” Toda, Jian Lin of WHOI and Ross S. Stein of USGS write in a summary of their paper in press for publication in the Tohoku Earthquake Special Issue of the journal Earth, Planets and Space. “A major shock does relieve stress—and thus the likelihood of a second major tremor—but only in some areas. The probability of a succeeding earthquake adjacent to the section of the fault that ruptured or on a nearby but different fault can jump” significantly.

The Tohoku earthquake, centered off northern Honshu Island, provided an “unprecedented” opportunity to utilize Japan’s “superb monitoring networks” to gather data on the quake, the scientists said. The Tohoku quake, the fourth largest earthquake ever recorded, was “the best-recorded [large quake] the world has ever known.”

This made the quake a “special” one in terms of scientific investigation, Lin said. “We felt we might be able to find something we didn’t see before” in previous quakes, he said.

The magnitude 9 quake appears to have influenced large portions of Honshu Island, Toda said. At particular risk, he said, are the Tokyo area, Mount Fuji and central Honshu including Nagano.

The Kantu fragment, which is close to Tokyo, also experienced an increase in stress. Previous government estimates have put Tokyo at a 70 percent risk for a magnitude 7 earthquake over the next 30 years. The new data from the Tohoku quake increase those odds to “more than 70 percent,” Toda said. “That is really high.”

Using a model known as Coulomb stress triggering, Lin and his colleagues found measureable increases in stress along faults to the north at Sanriku-Hokobu, south at Off Boso and at the Outer Trench Slope normal faults east of the quake’s epicenter off the Japan coast near the city of Sendai.

“Based on our other studies, these stress increases are large enough to increase the likelihood of triggering significant aftershocks or subsequent mainshocks,” the researchers said.

Stein of the USGS emphasized the ongoing risk to parts of Japan. “There remains a lot of real estate in Japan--on shore and off--that could host large, late aftershocks of the Tohoku quake,” he said.

“In addition to the megathrust surface to the north or south of the March 11 rupture, we calculate that several fault systems closer to Tokyo have been brought closer to failure, and some of these have lit up in small earthquakes since March 11. So, in our judgment, Central Japan, and Tokyo in particular, is headed for a long vigil that will not end anytime soon.”

Lin added that aftershocks, as well as new mainshocks, could continue for “weeks, months, years.”

Toda explained that the magnitude of future quakes is proportional to the length of the fault involved.

In a separate paper submitted to Geophysical Research Letters, the researchers “report on a broad and unprecedented increase in seismicity rate for microearthquakes over a broad (360 by 120 mile) area across inland Japan, parts of the Japan Sea and the Izu islands, following the 9.0 Tohoku mainshock.”

“The crust on the land was turned on…far away from a fault,” Lin said. Most of these are relatively small quakes—magnitude 2 to 4—“but a lot of them,” Lin said. “This is surprising; we’ve never seen this before,” he said. “Such small events…may have happened following major quakes in other places but may have been missed due to poor seismic networks.”

“The 9.0 Tohoku quake caught many people including scientists by surprise,” Lin said. “It had been thought that a large quake in this area would go up to about 8.2, not 9.0” That estimate was significantly influenced by historical data. “The Tohoku quake reminded us that considering only the historical earthquakes is inadequate, even in a country of relatively long written records like Japan and China,” he said.

“Historical records, and especially the instrumental records, are indeed too short to provide a full picture of the potential of large earthquakes in a region. Thus we must encourage many more studies to find geological evidence (for example, through analyzing sediment cores extracted on land and undersea) that might provide clues of large earthquake and tsunami events that occurred hundreds to thousands of years ago.”

“We must recognize that because our knowledge is incomplete, our estimation of seismic hazard is likely to be underestimated in many cases. Thus we must prepare for potential hazard that might be worse than we already know,” Lin said.

The finding that a quake such as this one can increase stresses elsewhere “means that new quakes could occur in the region,” Lin said. “We must factor in this new information on stresses into earthquake preparedness.”

The Woods Hole Oceanographic Institution is a private, independent organization in Falmouth, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean's role in the changing global environment.

Media Relations | EurekAlert!
Further information:
http://www.whoi.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>