Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iron legacy leaves soil high in manganese

13.12.2010
Iron furnaces that once dotted central Pennsylvania may have left a legacy of manganese enriched soils, according to Penn State geoscientists. This manganese can be toxic to trees, especially sugar maples, and other vegetation.

The research, which quantified the amounts of manganese in soil core samples, was part of work done at the Shale Hills Critical Zone Observatory funded by the National Science Foundation.

"Our group's focus was to study the soil chemistry," said Elizabeth M. Herndon, graduate student in geosciences. "We saw excess manganese in the soil and decided that we needed to quantify the manganese and determine where it came from."

Typically, manganese in soils comes from the disintegration of the bedrock as soil forms. Bedrock in this area is shale and the average amount of manganese in the shale is about 800 parts per million. However, the researchers found 14,000 parts per million of manganese in some of the soil samples. This is more than 17 times as much manganese as in the bedrock.

The researchers sampled 21 sites along a ridge at Shale Hills. They took core samples from the surface down to bedrock. At 20 of the sites they found elevated manganese. The core samples, which are about 12 inches long, encompass about 7,000 years of soil formation.

"We needed to quantify how much extra manganese there actually was in the samples," said Herndon. "While soil formation puts manganese into the soil, chemical weathering and physical erosion remove manganese from the soil, so we used a mass balance model to account for these inputs and outputs."

The researchers found that "53 percent of manganese in ridge soils can be attributed to atmospheric deposition from anthropogenic sources." They reported their results online in Environmental Science and Technology.

"Because the amount of manganese in the soil was highest near the surface, the added manganese was very likely industrial pollution," said Herndon.

This area of central Pennsylvania was the site of numerous iron furnaces beginning in the late 1700s. While some furnaces stayed in operation into the 20th century, most were abandoned by the 1860s. The legacy of the ores and fuels they burned remained behind in the soil.

Although the researchers, who include Herndon, Lixin Jin, postdoctoral fellow in geosciences, and Susan L. Brantley, professor of geosciences and director of the Penn State Earth and Environmental Systems Institute, knew there was added manganese, they needed to show that the element came from industry. They looked at a location near a steel mill in Burnham, in Mifflin County and found a similar pattern of manganese concentrations in the soil suggesting that the steel mill was the source of the manganese.

They also examined datasets for soils across the United States and Europe and found that a majority of these soils have excess manganese. This may indicate that manganese pollution is not just a local phenomenon but could be widespread throughout industrialized areas.

Because manganese is naturally found in soils and is readily taken up and cycled by trees, the researchers looked to see if the pattern of manganese deposition matched that of areas where trees were manipulating the manganese. In those cases, trees move manganese from deep in the soil creating deficits near the bedrock, but concentrate the manganese nearer the surface. According to Herndon, the manganese pattern did not show a depletion near bedrock and the case for industrial pollution was strengthened.

Manganese is an exceptionally reactive element and is considered toxic if inhaled, but its presence in the soil, where it occurs naturally and is less likely to be inhaled, is not typically a danger to humans. Trees, however, may be adversely effected. While sugar maples can be detrimentally affected if they have a manganese deficiency, too much manganese can be toxic especially for saplings. High levels of manganese can also damage other vegetation and crops.

"Manganese oxides could also change the chemical properties of the soil," said Herndon. "Even if the sources of manganese pollution are no longer active, the remnants remain in the soil. I find it interesting that we have to consider the kinds of contamination left over from the past that might impact us today."

The National Science Foundation supported this work.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

nachricht New atlas provides highest-resolution imagery of the Polar Regions seafloor
25.04.2017 | British Antarctic Survey

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>