Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving effectiveness of solar geoengineering

22.10.2012
Solar radiation management is a type of geoengineering that would manipulate the climate in order to reduce the impact of global warming caused by greenhouse gasses.

Ideas include increasing the amount of aerosols in the stratosphere, which could scatter incoming solar light away from Earth's surface, or creating low-altitude marine clouds to reflect these same rays.

Research models have indicated that the climatic effect of this type of geoengineering will vary by region, because the climate systems respond differently to the reflecting substances than they do to the atmospheric carbon dioxide that traps warmth in Earth's atmosphere. New work from a team including Carnegie's Ken Caldeira uses a climate model to look at maximizing the effectiveness of solar radiation management techniques. Their work is published October 21st by Nature Climate Change.

Attempting to counteract the warming effect of greenhouse gases with a uniform layer of aerosols in the stratosphere, would cool the tropics much more than it affects polar areas. Greenhouse gases tend to suppress precipitation and an offsetting reduction in amount of sunlight absorbed by Earth would not restore this precipitation. Both greenhouse gases and aerosols affect the distribution of heat and rain on this planet, but they change temperature and precipitation in different ways in different places. Varying the amount of sunlight deflected away from the Earth both regionally and seasonally could combat some of this problem.

By tailoring geoengineering efforts by region and by need, the team—led by California Institute of Technology's Douglas MacMartin—was able to explore ways to maximize effectiveness while minimizing the side effects and risks of this type of planetary intervention.

"These results indicate that varying geoengineering efforts by region and over different periods of time could potentially improve the effectiveness of solar geoengineering and reduce climate impacts in at-risk areas," Caldeira said. "For example, these approaches may be able to reverse long-term changes in the Arctic sea ice."

The study used a sophisticated climate model, but the team's model is still much simpler than the real world. Interference in Earth's climate system, whether intentional or unintentional, is likely to produce unanticipated outcomes.

"We have to expect the unexpected," Caldeira added. "The safest way to reduce climate risk is to reduce greenhouse gas emissions."

David Keith of Harvard and Ben Kravitz, formerly of Carnegie but now at DOE's Pacific Northwest National Lab, are co-authors on the study.

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Ken Caldeira | EurekAlert!
Further information:
http://www.carnegiescience.edu

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>