Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Idea of slow climate change in the earth’s past misleading

11.11.2015

Climate change is progressing rapidly. It is not the first time in our planet’s history that temperatures have been rising, but it is happening much faster now than it ever has before. Or is it? Researchers at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have shown in the latest edition of the journal Nature Communications* that the temperature changes millions of years ago probably happened no more slowly than they are happening today.

In order to predict how today’s ecosystems will react to increasing temperatures over the course of global warming, palaeobiologists study how climate change happened in the earth’s history and what the consequences were.


Image: Kilian Eichenseer

In order to compare the events of the past with current changes researchers need data on the scope of the changes. What was the speed with which temperatures increased or decreased? What was the magnitude of the change in temperatures? Until now, the general consensus has been that current climate change is happening more quickly than any previous temperature fluctuations.

Climate change in the earth’s past faster than previously thought

Together with a British colleagues, palaeobiologist Prof. Dr. Wolfgang Kießling and geosciences student Kilian Eichenseer, both from FAU, have published a pioneering study in Nature Communications explaining that the idea that environmental changes in the earth’s past happened slowly in comparison to current, rapid climate change is wrong.

The reason for this incorrect assumption is the different time periods that are examined in climate research. ‘Today we can measure the smallest fluctuations in climate whenever they occur,’ Kilian Eichenseer explains. ‘Yet when we look at geological history we’re lucky if we can determine a change in climate over a period of ten thousand years.’

Therefore, if we compare global warming over recent decades with the increase in temperature that happened 250 million years ago over the Permian-Triassic boundary, current climate change seems incredibly fast. Between 1960 and 2010, the temperature of the oceans rose at a rate of 0.007 degrees per year. ‘That doesn’t seem like much,’ Prof. Kießling says, ‘but it’s 42 times faster than the temperature increase that we are able to measure over the Permian-Triassic boundary. Back then the temperature of the oceans rose by 10 degrees, but as we are only able to limit the period to 60,000 years, this equates to a seemingly low rate of 0.00017 degrees per year.’

Rapid changes are invisible, not absent

In their study the researchers looked at around two hundred analyses of changes in climate from various periods in geological history. It became clear that the apparent speed of climate change appears slower the longer the time periods over which increases or decreases in temperature are observed. The reason for this is that over long periods rapid changes in climate do not happen constantly in one direction.

There are always phases during which the temperatures remain constant or even sink – a phenomenon that has also been observed in the current period of global warming. ‘However, we are unable to prove such fast fluctuations during past periods of climate change with the available methods of analysis. As a consequence, the data leads us to believe that climate change was always much slower in geological history than it is today, even when the greatest catastrophes occurred. However, that is not the case,’ Prof. Kießling says.

If we consider these scaling effects, the temperate increase over the Permian-Triassic boundary was no different to current climate change in terms of speed. The increase in temperature during this event is associated with a mass extinction event during which 90 percent of marine animals died out.

*Kemp, D. B., K. Eichenseer, and W. Kiessling. 2015. Maximum rates of climate change are systematically underestimated in the geological record. Nature Communications DOI: 10.1038/ncomms9890

Further information:

Prof. Dr. Wolfgang Kießling
Phone: +49 9131 8526959
wolfgang.kiessling@fau.de

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft
Further information:
http://www.fau.de/

More articles from Earth Sciences:

nachricht An Atom Trap for Water Dating
28.02.2017 | Universität Heidelberg

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Cells adapt ultra-rapidly to zero gravity

28.02.2017 | Health and Medicine

An Atom Trap for Water Dating

28.02.2017 | Earth Sciences

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>