Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Idea of slow climate change in the earth’s past misleading

11.11.2015

Climate change is progressing rapidly. It is not the first time in our planet’s history that temperatures have been rising, but it is happening much faster now than it ever has before. Or is it? Researchers at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have shown in the latest edition of the journal Nature Communications* that the temperature changes millions of years ago probably happened no more slowly than they are happening today.

In order to predict how today’s ecosystems will react to increasing temperatures over the course of global warming, palaeobiologists study how climate change happened in the earth’s history and what the consequences were.


Image: Kilian Eichenseer

In order to compare the events of the past with current changes researchers need data on the scope of the changes. What was the speed with which temperatures increased or decreased? What was the magnitude of the change in temperatures? Until now, the general consensus has been that current climate change is happening more quickly than any previous temperature fluctuations.

Climate change in the earth’s past faster than previously thought

Together with a British colleagues, palaeobiologist Prof. Dr. Wolfgang Kießling and geosciences student Kilian Eichenseer, both from FAU, have published a pioneering study in Nature Communications explaining that the idea that environmental changes in the earth’s past happened slowly in comparison to current, rapid climate change is wrong.

The reason for this incorrect assumption is the different time periods that are examined in climate research. ‘Today we can measure the smallest fluctuations in climate whenever they occur,’ Kilian Eichenseer explains. ‘Yet when we look at geological history we’re lucky if we can determine a change in climate over a period of ten thousand years.’

Therefore, if we compare global warming over recent decades with the increase in temperature that happened 250 million years ago over the Permian-Triassic boundary, current climate change seems incredibly fast. Between 1960 and 2010, the temperature of the oceans rose at a rate of 0.007 degrees per year. ‘That doesn’t seem like much,’ Prof. Kießling says, ‘but it’s 42 times faster than the temperature increase that we are able to measure over the Permian-Triassic boundary. Back then the temperature of the oceans rose by 10 degrees, but as we are only able to limit the period to 60,000 years, this equates to a seemingly low rate of 0.00017 degrees per year.’

Rapid changes are invisible, not absent

In their study the researchers looked at around two hundred analyses of changes in climate from various periods in geological history. It became clear that the apparent speed of climate change appears slower the longer the time periods over which increases or decreases in temperature are observed. The reason for this is that over long periods rapid changes in climate do not happen constantly in one direction.

There are always phases during which the temperatures remain constant or even sink – a phenomenon that has also been observed in the current period of global warming. ‘However, we are unable to prove such fast fluctuations during past periods of climate change with the available methods of analysis. As a consequence, the data leads us to believe that climate change was always much slower in geological history than it is today, even when the greatest catastrophes occurred. However, that is not the case,’ Prof. Kießling says.

If we consider these scaling effects, the temperate increase over the Permian-Triassic boundary was no different to current climate change in terms of speed. The increase in temperature during this event is associated with a mass extinction event during which 90 percent of marine animals died out.

*Kemp, D. B., K. Eichenseer, and W. Kiessling. 2015. Maximum rates of climate change are systematically underestimated in the geological record. Nature Communications DOI: 10.1038/ncomms9890

Further information:

Prof. Dr. Wolfgang Kießling
Phone: +49 9131 8526959
wolfgang.kiessling@fau.de

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft
Further information:
http://www.fau.de/

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>