Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Less ice in the Arctic Ocean 6000-7000 years ago

20.10.2008
Recent mapping of a number of raised beach ridges on the north coast of Greenland suggests that the ice cover in the Arctic Ocean was greatly reduced some 6000-7000 years ago. The Arctic Ocean may have been periodically ice free.

”The climate in the northern regions has never been milder since the last Ice Age than it was about 6000-7000 years ago. We still don’t know whether the Arctic Ocean was completely ice free, but there was more open water in the area north of Greenland than there is today,” says Astrid Lyså, a geologist and researcher at the Geological Survey of Norway (NGU).

Shore features

Together with her NGU colleague, Eiliv Larsen, she has worked on the north coast of Greenland with a group of scientists from the University of Copenhagen, mapping sea-level changes and studying a number of shore features. She has also collected samples of driftwood that originated from Siberia or Alaska and had these dated, and has collected shells and microfossils from shore sediments.

”The architecture of a sandy shore depends partly on whether wave activity or pack ice has influenced its formation. Beach ridges, which are generally distinct, very long, broad features running parallel to the shoreline, form when there is wave activity and occasional storms. This requires periodically open water,” Astrid Lyså tells me.

Pack-ice ridges which form when drift ice is pressed onto the seashore piling up shore sediments that lie in its path, have a completely different character. They are generally shorter, narrower and more irregular in shape.

Open sea

”The beach ridges which we have had dated to about 6000-7000 years ago were shaped by wave activity,” says Astrid Lyså. They are located at the mouth of Independence Fjord in North Greenland, on an open, flat plain facing directly onto the Arctic Ocean. Today, drift ice forms a continuous cover from the land here. Astrid Lyså says that such old beach formations require that the sea all the way to the North Pole was periodically ice free for a long time.

”This stands in sharp contrast to the present-day situation where only ridges piled up by pack ice are being formed,” she says.

However, the scientists are very careful about drawing parallels with the present-day trend in the Arctic Ocean where the cover of sea ice seems to be decreasing.

"Changes that took place 6000-7000 years ago were controlled by other climatic forces than those which seem to dominate today,” Astrid Lyså believes.

Inuit immigration

The mapping at 82 degrees North took place in summer 2007 as part of the LongTerm project, a sub-project of the major International Polar Year project, SciencePub. The scientists also studied ruined settlements dating from the first Inuit immigration to these desolate coasts.

The first people from Alaska and Canada, called the Independence I Culture, travelled north-east as far as they could go on land as long ago as 4000-4500 years ago. The scientists have found out that drift ice had formed on the sea again in this period, which was essential for the Inuit in connection with their hunting. No beach ridges have been formed since then.

”Seals and driftwood were absolutely vital if they were to survive. They needed seals for food and clothing, and driftwood for fuel when the temperature crept towards minus 50 degrees. For us, it is inconceivable and extremely impressive,” says Eiliv Larsen, the NGU scientist and geologist.

Eiliv Larsen | alfa
Further information:
http://www.ngu.no

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>