Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hybrid Remotely Operated Vehicle “Nereus” Reaches Deepest Part of the Ocean

04.06.2009
A new type of deep-sea robotic vehicle called Nereus has successfully reached the deepest part of the world’s ocean, reports a team of U.S. engineers and scientists aboard the research vessel Kilo Moana. The dive to 10,902 meters (6.8 miles) occurred on May 31, 2009, at the Challenger Deep in the Mariana Trench in the western Pacific Ocean.

The dive makes Nereus the world’s deepest-diving vehicle and the first vehicle to explore the Mariana Trench since 1998.

Nereus’s unique hybrid-vehicle design makes it ideally suited to explore the ocean’s last frontiers. The unmanned vehicle is remotely operated by pilots aboard a surface ship via a lightweight, micro-thin, fiber-optic tether that allows Nereus to dive deep and be highly maneuverable. Nereus can also be switched into a free-swimming, autonomous vehicle.

“The Mariana Trench is the deepest known part of the ocean. Reaching such extreme depths represents the pinnacle of technical challenges and the team is very pleased Nereus has been successful in reaching the very bottom to return imagery and samples from such a hostile world. With a robot like Nereus we can now explore virtually anywhere in the ocean,” said Andy Bowen, the project manager and principal developer of Nereus at the Woods Hole Oceanographic Institution (WHOI). “The trenches are virtually unexplored, and I am absolutely certain Nereus will enable new discoveries. I believe it marks the start of a new era in ocean exploration.”

“Much of the ocean’s depth remains unexplored. Ocean scientists now have a unique tool to gather images, data, and samples from everywhere in the oceans, rather than those parts shallower than 6500 meters (4 miles),” said Julie Morris, director of the National Science Foundation (NSF) Ocean Sciences Division, the principal sponsor of the $8 million project. “With its innovative technology, Nereus allows us to study and understand the ocean’s deepest regions, previously inaccessible. We’re very pleased with the success of these sea trials.”

Aside from NSF, funds for Nereus have been provided by the Office of Naval Research, the National Oceanic and Atmospheric Administration, the Russell Family Foundation, and WHOI.

The Mariana Trench forms the boundary between two tectonic plates, where the Pacific Plate is subducted beneath the small Mariana Plate. It is part of the Pacific Ring of Fire, a 40,000-kilometer (25,000-mile) area where most of the world’s volcanic eruptions and earthquakes occur. At 11,000 meters, its depth is approximately the same as the cruising altitude of a commercial airliner.

To reach the trench, Nereus dove nearly twice as deep as research submarines are capable of and had to withstand pressures 1,000 times that at Earth’s surface—crushing forces similar to those on the surface of Venus. Only two other vehicles have succeeded in reaching the trench: the U.S. Navy-built bathyscaphe Trieste, which carried Jacques Piccard and Don Walsh there in 1960, and the Japanese-built robot Kaiko, which made three unmanned expeditions to the trench between 1995 and 1998. Neither of these is presently available to the scientific community. Trieste was retired in 1966, and Kaiko was lost at sea in 2003.

Unique design
The Nereus engineering team knew that, to reach these depths, a tethered robot using traditional technologies would be prohibitively expensive to build and operate. So they used unique technologies and innovative methods to strike a balance between size, weight, materials cost, and functionality.

Building on previous experience developing tethered robots and autonomous underwater vehicles (AUVs) at WHOI and elsewhere, the team fused the two approaches together to develop a hybrid vehicle that could fly like an aircraft to survey and map broad areas and then be converted at sea into a tethered, remotely operated vehicle (ROV) that can hover like a helicopter near the seafloor to conduct experiments or to collect biological or rock samples under real-time human control. The present trials of Nereus are being conducted in this tethered, ROV mode of operation.

The tethering system presented one of the greatest challenges in developing a cost-effective ROV capable of reaching these depths. Traditional robotic systems use a steel- reinforced cables containing copper wires to power the vehicle and optical fibers to enable information to be passed between the ship and the vehicle. If such a cable were used to reach the seafloor in the Mariana Trench, it would snap under its own weight.

To solve this challenge, the Nereus team adapted fiber-optic technology developed by the Navy’s Space and Naval Warfare Systems Center Pacific (SSC Pacific) to carry real-time video and other data between the Nereus and the surface crew. Similar in diameter to a human hair and with a breaking strength of only 4 kilograms (8.8 pounds), the tether is composed of glass fiber core with a very thin protective jacket of plastic. Nereus brings approximately 40 kilometers (25 miles) of cable in two canisters the size of large coffee cans that spool out the fiber as needed. By using this very slender tether instead of a large cable, the team was able to decrease the size, weight, complexity, and cost of the vehicle.

Another weight-saving advance of the vehicle is its use of ceramic spheres for flotation, rather than the much heavier traditional syntactic foam used on vehicles like the submersible Alvin or the ROV Jason. Each of Nereus’s two hulls contains approximately 800 of the ~9-centimeter (3.5-inch) hollow spheres precisely designed and fabricated to withstand crushing pressures.

WHOI engineers modified a hydraulically operated robotic manipulator arm to operate under intense pressure and make effective use of the vehicle's limited battery power.

With its tandem hull design, Nereus weighs nearly 3 tons in air and is about 4.25 meters (14 feet) long and approximately 2.3 meters (nearly 8 feet) wide. It is powered by more than 4,000 lithium-ion batteries. They are similar to those used in laptop computers and cell phones, but have been carefully tested to be used safely and reliably under the intense pressure of the depths.

Reaching the bottom
The expedition left Guam aboard RV Kilo Moana, operated by the University of Hawaii, on May 24 to begin a two-week engineering test cruise. On May 25, the team, which includes co-principal investigators Louis Whitcomb, a professor of mechanical engineering at The Johns Hopkins University, and Dana Yoerger of WHOI who were responsible for development of the vehicle’s navigation and control system, conducted a planned sequence of successively deeper dives—testing Nereus, making scientific observations and collecting deep-sea samples at each depth they reached. Testing will continue over the next few days, and the team will return to port on June 5.

“We hope that Nereus will help scientists investigate some of the ‘big questions’ of our time – questions of vital societal importance such the relation between seafloor dynamics and global climate change,” said Whitcomb.

Co-chief scientists of the expedition, Tim Shank, a WHOI biologist, and Patty Fryer, a geologist with the University of Hawaii, are on board to examine the samples retrieved by the vehicle during each dive in its ROV mode.

On its dive to the Challenger Deep, Nereus spent over 10 hours on the bottom, sending live video back to the ship through its fiber-optic tether and collecting geological and biological samples with its manipulator arm, and placed a marker on the seafloor signed by those onboard the surface ship. “The samples collected by the vehicle include sediment from the subducting and overriding tectonic plates that meet at the trench and, for the first time, rocks from deep exposures of the Earth’s crust close to mantle depths south of the Challenger Deep,” said Fryer. “We will know the full story once the shore-based analyses are completed back the laboratory this summer and integrate them with the new mapping data to tell a story of plate collision in greater detail than ever before accomplished in the worlds oceans.”

“These and future discoveries by Nereus will be the result of its versatility and agility – it’s like no other deep submergence vehicle,” said Shank. “It allows vast areas to be explored with great effectiveness. Our true achievement is not just getting to the deepest point in our ocean, but unleashing a capability that now enables deep exploration, unencumbered by a heavy tether and surface ship, to scientifically investigate some of the most dynamically-rich geological and biological systems on Earth.”

The design and construction of Nereus has been documented since 2006 by the Science Channel. Their cameras were aboard the Kilo Moana for this historic expedition to the deepest waters on Earth, chronicling the team’s tests and findings for American audiences. A one-hour documentary produced by Discovery Studios will air on Science Channel and Science Channel HD early this fall.

“We couldn’t be prouder of the stunning accomplishments of this dedicated and talented team,” said Susan Avery, president and director of WHOI. “With this engineering trial successfully behind us, we’re eager for Nereus to become widely used to explore the most inaccessible reaches of the ocean. With no part of the deep seafloor beyond our reach, it’s exciting to think of the discoveries that await.”

The Woods Hole Oceanographic Institution is a private, independent organization in Falmouth, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the oceans’ role in the changing global environment.

Stephanie Murphy | Newswise Science News
Further information:
http://www.whoi.edu
http://www.whoi.edu/page.do?pid=7545&tid=282&cid=57586&ct=162

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>