Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More hurricanes for Hawaii?

06.05.2013
News of a hurricane threat sends our hearts racing, glues us to the Internet for updates, and makes us rush to the store to stock up on staples. Hawaii, fortunately, has been largely free from these violent storms in the recent past, only two having made landfall in more than 30 years.

Now a study headed by a team of scientists at the International Pacific Research Center, University of Hawaii at Manoa, shows that Hawaii could see a two-to-three-fold increase in tropical cyclones by the last quarter of this century. The study, which appears in the May 5, 2013, online issue of Nature Climate Change, though, leaves open the question, how worried Island residents should get.


Hurricane Flossie is approaching the Big Island of Hawaii in August 2007.
Credit: NASA

"Computer models run with global warming scenarios generally project a decrease in tropical cyclones worldwide. This, though, may not be what will happen with local communities," says lead author Hiroyuki Murakami.

To determine whether tropical cyclones will become more frequent in Hawaii with climate change, Murakami and climate expert Bin Wang at the Meteorology Department, University of Hawaii at Manoa, joined forces with Akio Kitoh at the Meteorological Research Institute and the University of Tsukuba in Japan. The scientists compared in a state-of-the-art, high-resolution global climate model the recent history of tropical cyclones in the North Pacific with a future (2075–2099) scenario, under which greenhouse gas emissions continue to rise, resulting in temperatures about 2°C higher than today.

"In our study, we looked at all tropical cyclones, which range in intensity from tropical storms to full-blown category 5 hurricanes. From 1979 to 2003, both observational records and our model document that only every four years on average did a tropical cyclone come near Hawaii. Our projections for the end of this century show a two-to-three-fold increase for this region," explains Murakami.

The main factors responsible for the increase are changes in the large-scale moisture conditions, the flow patterns in the wind, and in surface temperature patterns stemming from global warming.

Most hurricanes that might threaten Hawaii now are born in the eastern Pacific, south of the Baja California Peninsula. From June through November the ingredients there are just right for tropical cyclone formation, with warm ocean temperatures, lots of moisture, and weak vertical wind shear. But during the storms' long journey across the 3000 miles to Hawaii, they usually fizzle out due to dry conditions over the subtropical central Pacific and the wind shear from the westerly subtropical jet.

Surprisingly, even though fewer tropical cyclones will form in the eastern Pacific in Murakami's future scenario, we can expect more of them to make their way to Hawaii.

The upper-level westerly subtropical jet will move poleward so that the mean steering flow becomes easterly. Thus, storms from Baja California are much more likely to make it to Hawaii. Furthermore, since the climate models also project that the equatorial central Pacific will heat up, conditions may become more favorable for hurricane formation in the open ocean to the south or southeast of Hawaii.

"Our finding that more tropical cyclones will approach Hawaii as Earth continues to warm is fairly robust because we ran our experiments with different model versions and under varying conditions. The yearly number we project, however, still remains very low," reassures study co-author Wang.

Citation:
Hiroyuki Murakami, Bin Wang, Tim Li, and Akio Kitoh: Projected increase in tropical cyclones near Hawaii. Nature Climate Change, May 5, 2013, on line publication: http://dx.doi.org/10.1038/NCLIMATE1890
Funding:
This work--completed at the International Pacific Research Center, which is supported by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC), NASA and NOAA--was conducted under the framework of the 'Projection of the Change in Future Weather Extremes Using Super-High-Resolution Atmospheric Models' supported by the KAKUSHIN and SOUSEI programmes of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. H.M. was supported by the 'Research on Prediction of Climate and Environmental Change to Contribute to Mitigation Plan Decision Against Climate Change' of the MRI of Japan. B.W. acknowledges the support from the Global Research Laboratory (GRL) Program of the Korean Ministry of Education, Science and Technology (MEST, 2011-0021927). Calculations were performed on the Earth Simulator.
Author Contacts:
Hiroyuki Murakami, Postdoctoral Fellow: Phone: 808-956-3305; email: hmura@hawaii.edu, International Pacific Research Center, School of Ocean and Earth Science and Technology University of Hawaii at Manoa, Honolulu, Hawaii 96822.

Bin Wang, Chair and Professor of Meteorology: Phone: 808-956-2563, email: wangbin@hawaii.edu, International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii 96822.

International Pacific Research Center Media Contact: Gisela E. Speidel, International Pacific Research Center, School of Ocean and Earth Science and Technology University of Hawaii at Manoa, Honolulu, Hawaii 96822.

The International Pacific Research Center (IPRC) of the School of Ocean and Earth Science and Technology at the University of Hawaii at Manoa is a climate research center founded to gain greater understanding of the climate system and the nature and causes of climate variation in the Asia-Pacific region and how global climate changes may affect the region. Established under the "U.S.-Japan Common Agenda for Cooperation in Global Perspective" in October 1997, the IPRC is a collaborative effort between agencies in Japan and the United States.

Gisela Speidel | EurekAlert!
Further information:
http://www.hawaii.edu

More articles from Earth Sciences:

nachricht Northern oceans pumped CO2 into the atmosphere
27.03.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

nachricht Weather extremes: Humans likely influence giant airstreams
27.03.2017 | Potsdam-Institut für Klimafolgenforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>