Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hurricane Norbert Pinwheels in NASA Satellite Imagery

05.09.2014

The Eastern Pacific's Hurricane Norbert resembled a pinwheel in an image from NASA's Terra satellite as bands of thunderstorms spiraled into the center. NASA's Global Precipitation Measurement or GPM mission has helped forecasters see that Norbert has lost some of its organization early on September 4.

The MODIS instrument or Moderate Resolution Imaging Spectroradiometer aboard NASA's Terra satellite captured a visible picture of Tropical Storm Norbert on Sept. 4 at 2:15 p.m. EDT when it resembled a pinwheel. The western bands of Norbert were moving over Socorro Island, located several hundred miles west of Mexico's west coast. An eye was not apparent in the image, although Norbert was strengthening into a hurricane. The image was created by the MODIS Rapid Response Team at NASA's Goddard Space Flight Center in Greenbelt, Maryland.


The MODIS instrument aboard NASA's Terra satellite captured this image of Tropical Storm Norbert on Sept. 4 at 2:15 p.m. EDT when it resembled a pinwheel.

Image Credit: NASA Goddard MODIS Rapid Response Team

Less than six hours later at 8 p.m. EDT, the National Hurricane Center noted that Norbert became a hurricane with maximum sustained winds near 75 mph (120 kph). Overnight and into the early morning hours of September 4, maximum sustained winds increased to 80 mph (130 kph).

On Thursday, September 4, 2014, the National Hurricane Center (NHC) continued the Tropical Storm Warning from La Paz to Cabo San Lazaro, Mexico. A tropical storm watch is also in effect north of Cabo San Lazaro to Puerto San Andresito and north of La Paz to San Evaristo.

... more about:
»Baja »EDT »Flight »Greenbelt »Hurricane »MODIS »NASA »NHC »Space »hurricane »satellite »tropical »winds

At 8 a.m. EDT (5 a.m. PDT), Norbert's maximum sustained winds remain near 80 mph (130 kph) and some slow strengthening is expected during the next 24 hours. Those hurricane-force winds only extend up to 25 miles (35 km) from the center, and tropical storm force winds extend out 105 miles (165 km), which is why the Baja is under a tropical storm warning.   

Norbert's center was located near latitude 20.6 north and longitude 110.0 west. That's just 160 miles (255 km) south of the southern tip of Baja California. Norbert was moving toward the northwest near 6 mph (9 kph) and movement in that direction is expected to continue over the next couple of days taking Norbert along the coast.

On the NHC's forecast track the center of the hurricane is expected to approach the southern tip of the Baja California Peninsula today and move nearly parallel to the pacific coast of the peninsula tonight and Friday, September 5.

The NHC uses data from multiple satellites, including NASA's new GPM satellite. The NHC discussion on Norbert at 5 a.m. EDT today, September 4, said "Recent microwave images, including a NASA GPM overpass at 0516 UTC (1:16 a.m. EDT), indicate that Norbert has lost some organization during the past few hours due to easterly vertical wind shear.  The low-level center is in the northeastern part of the central convection with a mid-level eye displaced to the southwest of the low-level center.

Norbert is forecast to track parallel along the coast of Baja California for the next couple of days.

Rob Gutro
NASA's Goddard Space Flight Center, Greenbelt, Maryland

Rob Gutro | Eurek Alert!
Further information:
http://www.nasa.gov/content/goddard/norbert-eastern-pacific/

Further reports about: Baja EDT Flight Greenbelt Hurricane MODIS NASA NHC Space hurricane satellite tropical winds

More articles from Earth Sciences:

nachricht NASA sees Hurricane Jimena's large eye
01.09.2015 | NASA/Goddard Space Flight Center

nachricht First global antineutrino emission map highlights Earth's energy budget
01.09.2015 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Siemens sells 18 industrial gas turbines to Thailand

01.09.2015 | Press release

An engineered surface unsticks sticky water droplets

01.09.2015 | Materials Sciences

New material science research may advance tech tools

01.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>