Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hurricane Gustav

08.09.2008
The development and path of Hurricane Gustav is shown via a sequence of satellite images acquired by Envisat’s Medium Resolution Imaging Spectrometer (MERIS) instrument on 25 August, 28 August, 30 August and 1 September 2008.

Gustav formed on 25 August 2008 some 400 km southeast of Port-au-Prince, Haiti (seen above far right image), when a tropical wave developed curved bands and an upper level eye feature (visible), causing the U.S. National Hurricane Center to designate it Tropical Depression Seven.

Later that day, it had gained enough strength to be designated Tropical Storm Gustav. By the following morning, Gustav had strengthened into a hurricane with winds reaching 150 km per hour.

Hurricane Gustav weakened as it moved over Haiti’s mountainous landscape and was downgraded to a tropical storm. The storm moved toward Jamaica (as visible in the 28 August acquisition) and picked up strength. By 29 August, it was again upgraded to a hurricane.

As it neared the west end of Cuba on 30 August (visible), Gustav was upgraded to a Category 3 hurricane on the Saffir-Simpson Hurricane Scale with sustained winds near 195 km per hour.

By 31 August Hurricane Gustav had entered the Gulf of Mexico with maximum sustained winds of more than 210 km per hour and made landfall in Louisiana on 1 September (visible) as a Category 2 hurricane with winds close to 177 km an hour.

Hurricanes are large powerful storms that rotate around a central area of extreme low pressure. They arise in warm tropical waters that transfer their heat to the air. The warmed air rises rapidly, in the process creating low pressure at the water surface. Winds begin rushing inwards and upwards around this low-pressure zone.

Instruments aboard ESA’s Envisat allow it to observe various features of hurricanes, including high atmosphere cloud structure and pressure, wind pattern and currents at sea surface level and oceanic warm features that contribute to the intensification of hurricanes.

Mariangela D'Acunto | alfa
Further information:
http://www.esa.int/esaEO/SEMV0RO4KKF_index_0.html

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>