Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How hot did Earth get in the past? Team of scientists uncovers new information

06.07.2011
The question seems simple enough: What happens to the Earth's temperature when atmospheric carbon dioxide levels increase? The answer is elusive.

However, clues are hidden in the fossil record. A new study by researchers from Syracuse and Yale universities provides a much clearer picture of the Earth's temperature approximately 50 million years ago when CO2 concentrations were higher than today. The results may shed light on what to expect in the future if CO2 levels keep rising.

The study, which for the first time compared multiple geochemical and temperature proxies to determine mean annual and seasonal temperatures, is published online in the journal Geology, the premier publication of the Geological Society of America, and is forthcoming in print Aug. 1.

SU Alumnus Caitlin Keating-Bitonti '09 is the corresponding author of the study. She conducted the research as an undergraduate student under the guidance of Linda Ivany, associate professor of earth sciences, and Scott Samson, professor of earth sciences, both in Syracuse University's College of Arts and Sciences. Early results led the team to bring in Hagit Affek, assistant professor of geology and geophysics at Yale University, and Yale Ph.D. candidate Peter Douglas for collaborative study. The National Science Foundation and the American Chemical Society funded the research.

"The early Eocene Epoch (50 million years ago) was about as warm as the Earth has been over the past 65 million years, since the extinction of the dinosaurs," Ivany says. "There were crocodiles above the Arctic Circle and palm trees in Alaska. The questions we are trying to answer are how much warmer was it at different latitudes and how can that information be used to project future temperatures based on what we know about CO2 levels?"

Previous studies have suggested that the polar regions (high-latitude areas) during the Eocene were very hot—greater than 30 degrees centigrade (86 degrees Fahrenheit). However, because the sun's rays are strongest at the Earth's equator, tropical and subtropical areas (lower latitude) will always be at least as warm as polar areas, if not hotter. Until now, temperature data for subtropical regions were limited.

The SU and Yale research team found that average Eocene water temperature along the subtropical U.S. Gulf Coast hovered around 27 degrees centigrade (80 degrees Fahrenheit), slightly cooler than earlier studies predicted. Modern temperatures in the study area average 75 degrees Fahrenheit. Additionally, the scientists discovered that, during the Eocene, temperatures in the study area did not change more than 3 to 5 degrees centigrade across seasons, whereas today, the area's seasonal temperatures fluctuate by 12 degrees centigrade. The new results indicate that the polar and sub-polar regions, while still very warm, could not have been quite as hot as previously suggested.

The findings are based on a chemical analysis of the growth rings of the shells of fossilized bivalve mollusks and on the organic materials trapped in the sediment packed inside the shells, which was conducted by Keating-Bitonti and her colleagues. Ivany collected the fossils from sediment layers exposed along the Tombigbee River in Alabama. The mollusks lived in a near-shore marine environment during a time when the sea level was higher and the ocean flooded much of southern Alabama. The sediments that accumulated there contain one of the richest and best-preserved fossil records in the country.

"Our study shows that previous estimates of temperatures during the early Eocene were likely overestimated, especially at higher latitudes near the poles," Keating-Bitonti says. "The study does not mean elevated atmospheric CO2 levels did not produce a greenhouse effect—the Earth was clearly hotter during the early Eocene. Our results support predictions that increasing levels of atmospheric CO2 will result in a warmer climate with less seasonality across the globe."

To determine the average seasonal temperatures in the study area, Keating-Bitonti sampled the mollusk shells for high-resolution oxygen and strontium isotope analyses, which were done at SU. The Yale team analyzed shells and sediments for clumped-isotope and tetraether-lipid analysis. The results were consistent across all of the independent analytic methods. The scientists believe the multiple methods of analysis have yielded a more complete and accurate picture of ancient climate than previously possible.

The study also marks the first time clumped-isotope analysis has been used alongside traditional oxygen isotope and organic geochemical analyses in paleoclimate work. The research team is currently using the same analytical process to determine Eocene Epoch mean annual and seasonal temperatures in polar-regions.

"Clumped isotopes is a new way to measure past temperatures that offers a distinct advantage over other approaches because the technique requires fewer assumptions; it's based on well understood physics," Affek says. "The agreement among different methods gives us confidence in the results and enables us to use these methods in other locations, such as Antarctica."

Keating-Bitonti recently completed a master's degree in geology at the University of Wisconsin and will be continuing her studies at Stanford University as a Ph.D. student in the Department of Geological and Environmental Sciences, School of Earth Sciences.

Judy Holmes | EurekAlert!
Further information:
http://www.syr.edu

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>