Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heat waves, ice-storms, droughts and hurricanes – their impact on the carbon cycle

28.03.2013
How do climate extremes affect the carbon cycle of land ecosystems? How do the resulting carbon cycle changes in turn affect the climate?

These questions will be discussed during the international “Open Science Conference on Climate Extremes and Biogeochemical Cycles in the Terrestrial Biosphere: impacts and feedbacks across scales” in Seefeld, Austria, from 2nd to 5th April 2013, hosted by the University of Innsbruck.


Soil after drought, Island of Milos, Greece
Photo: Marcel van Oijen, Centre for Ecology and Hydrology (CEH-Edinburgh)

More than 150 scientists from over 20 different countries will meet to discuss the responses of ecosystems to climate variability and weather extremes, based on experimental evidence and modeling of the biosphere-climate system.

Rising atmospheric greenhouse gas concentrations not only lead to global warming but also to increased climate variability and extreme weather situations. Within the past decade an exceptionally high number of extreme heat waves occurred around the globe: Record breaking temperatures hit central Western Europe in 2003, causing a large number of fatalities due to heat stress. In South-Eastern Europe dramatic wildfires ravaged in 2007, especially in Greece. Together with huge forest fires, an extraordinary heat wave with record temperatures led to a high and long-lasting air pollution in western Russia in 2010. The drought in 2011-2012 was reported to be one of the most severe ever recorded in the United States, with an economic loss of billions of dollars and heavy crop failures.

Not only severe droughts and heat waves but also extreme precipitation and windstorms can impact the structure, composition, and functioning of terrestrial ecosystems. The importance of extreme climatic events for the carbon balance became clear after the 2003 heat wave in Central and Southern Europe. Triggered by this month-long anomaly, the ecosystems lost as much CO2 as they had absorbed from the atmosphere through the previous four years under normal weather conditions.
Recent evidence also suggests that extreme weather may influence the carbon balance of our terrestrial biosphere such that it accelerates climate change. Co-organizers Dr. Michael Bahn, Associate Professor at University of Innsbruck, and Dr. Markus Reichstein, Max-Planck Director at the Max-Planck Institute for Biogeochemistry, Jena, state unanimously: “Several lines of evidence indicate water-cycle extremes, in particular droughts, being a dominant risk for the carbon cycle in large parts of Europe. The largest and most diverse and enduring effects of extreme events are expected in forests.”

The “Open Science Conference on Climate Extremes and Biogeochemical Cycles in the Terrestrial Biosphere” is a joint initiative of the EU supported FP7 research project CARBO-Extreme, the US-based network INTERFACE, and the international activity iLEAPS funded by the International Geosphere-Biosphere Program. CARBO-Extreme analyses the impact of climate extremes on the terrestrial carbon cycle. The University of Innsbruck is a partner in the CARBO-Extreme project which is coordinated by the German Max Planck Institute for Biogeochemistry in Jena.
Contact:
Dr. Markus Reichstein (mreichstein@bgc-jena.mpg.de)
Max Planck Institute for Biogeochemistry
Hans-Knoell-Str. 10
07745 Jena, Germany
Ph: +49 (0)3641 57-6273

Susanne Hermsmeier | Max-Planck-Institut
Further information:
http://www.bgc-extremes2013.org
http://www.carbo-extreme.eu

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>