Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What Is Really Happening To Greenland Icecap?

03.11.2008
The Greenland ice cap has been a focal point of recent climate change research because it is much more exposed to immediate global warming than the larger Antarctic ice sheet.

Yet while the southern Greenland ice cap has been melting, it is still not clear how much this is contributing to rising sea levels, and much further research is needed. A framework for such research was defined at a recent workshop organised by the European Science Foundation (ESF).

"The main objectives were to establish current understanding, prioritise research needs, and develop proposals," said one of the ESF workshop's convenors, Professor Tavi Murray from the Glaciology Group at Swansea University in the UK. "I believe we did the first two very well and laid the ground for developing research proposals."

While recent observations indicate that the Greenland ice cap is melting fast, it is uncertain how much this is contributing to sea levels, as co-convenor Carl Bøggild, from UNIS in Svalbard explained. "A major challenge is to determine what fraction of melt water really runs off, because in many places the melt water will just drain into the cold snow and refreeze," said Bøggild.

One way to determine how much water is running off is to measure not just the area of the Greenland ice cap but also its thickness, but this is much more difficult. Alternatively, the run off process can be tracked both on the ground and by satellite, preferably integrating the two, as was discussed at the workshop. The need to establish a database of ground based observations, including run off, as well as the ongoing calving of ice bergs from the ice cap and occasional events such as earthquakes beneath the ice was discussed.

Perhaps the greatest immediate challenge identified at the workshop though lies in reducing the high levels of uncertainty over the current and future behaviour of the Greenland ice cap, and reconciling the many conflicting observations and predictions. In the case of the meltwater, estimates of the annual total vary by a factor of five from 50 gigatons (GT) to around 250 GT, and this level of uncertainty makes future predictions almost meaningless.

"Laser satellites can detect elevation changes within 10 cm accuracy - but do not consider compaction of the snow," said Murray. "Other satellites using radio waves have a problem with penetration of the signal into the snow. And, yet another method from satellites, measuring the 'weight' of the ice sheet covers too large areas - so you also detect weight changes outside the ice sheet." But at least these multiple sources of data have the potential of being combined to yield more accurate estimates.

Not surprisingly, given these uncertainties, it is unclear even what the immediate future holds for the Greenland ice cap. As Murray noted, recent high levels of thinning in the south and around the edges have taken climatologists by surprise, but there is no guarantee it will continue. "There is much uncertainty presently, because observations of thinning have come as a surprise," said Murray. "We can basically say that three scenarios are possible regarding the enhanced thinning which has been observed recently. One is that it will keep escalating. Secondly it may remain constant even though the climate gets warmer, and thirdly the enhanced rate of thinning may stop altogether, with future thinning being purely the result of melting."

It is not clear yet which of these scenarios will transpire, but Murray and Bøggild are convinced that the ESF workshop has prepared the ground for substantial progress, by bringing together the relevant diverse skills in glaciology, climatology, geology, modelling and satellite imaging. The workshop, Sea-Level Rise From The Greenland Ice Sheet, was held in Mallorca, Spain in May 2008.

Thomas Lau | alfa
Further information:
http://www.esf.org
http://www.esf.org/activities/exploratory-workshops/workshops-list/workshops-detail.html?ew=6495

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>