Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What Is Really Happening To Greenland Icecap?

03.11.2008
The Greenland ice cap has been a focal point of recent climate change research because it is much more exposed to immediate global warming than the larger Antarctic ice sheet.

Yet while the southern Greenland ice cap has been melting, it is still not clear how much this is contributing to rising sea levels, and much further research is needed. A framework for such research was defined at a recent workshop organised by the European Science Foundation (ESF).

"The main objectives were to establish current understanding, prioritise research needs, and develop proposals," said one of the ESF workshop's convenors, Professor Tavi Murray from the Glaciology Group at Swansea University in the UK. "I believe we did the first two very well and laid the ground for developing research proposals."

While recent observations indicate that the Greenland ice cap is melting fast, it is uncertain how much this is contributing to sea levels, as co-convenor Carl Bøggild, from UNIS in Svalbard explained. "A major challenge is to determine what fraction of melt water really runs off, because in many places the melt water will just drain into the cold snow and refreeze," said Bøggild.

One way to determine how much water is running off is to measure not just the area of the Greenland ice cap but also its thickness, but this is much more difficult. Alternatively, the run off process can be tracked both on the ground and by satellite, preferably integrating the two, as was discussed at the workshop. The need to establish a database of ground based observations, including run off, as well as the ongoing calving of ice bergs from the ice cap and occasional events such as earthquakes beneath the ice was discussed.

Perhaps the greatest immediate challenge identified at the workshop though lies in reducing the high levels of uncertainty over the current and future behaviour of the Greenland ice cap, and reconciling the many conflicting observations and predictions. In the case of the meltwater, estimates of the annual total vary by a factor of five from 50 gigatons (GT) to around 250 GT, and this level of uncertainty makes future predictions almost meaningless.

"Laser satellites can detect elevation changes within 10 cm accuracy - but do not consider compaction of the snow," said Murray. "Other satellites using radio waves have a problem with penetration of the signal into the snow. And, yet another method from satellites, measuring the 'weight' of the ice sheet covers too large areas - so you also detect weight changes outside the ice sheet." But at least these multiple sources of data have the potential of being combined to yield more accurate estimates.

Not surprisingly, given these uncertainties, it is unclear even what the immediate future holds for the Greenland ice cap. As Murray noted, recent high levels of thinning in the south and around the edges have taken climatologists by surprise, but there is no guarantee it will continue. "There is much uncertainty presently, because observations of thinning have come as a surprise," said Murray. "We can basically say that three scenarios are possible regarding the enhanced thinning which has been observed recently. One is that it will keep escalating. Secondly it may remain constant even though the climate gets warmer, and thirdly the enhanced rate of thinning may stop altogether, with future thinning being purely the result of melting."

It is not clear yet which of these scenarios will transpire, but Murray and Bøggild are convinced that the ESF workshop has prepared the ground for substantial progress, by bringing together the relevant diverse skills in glaciology, climatology, geology, modelling and satellite imaging. The workshop, Sea-Level Rise From The Greenland Ice Sheet, was held in Mallorca, Spain in May 2008.

Thomas Lau | alfa
Further information:
http://www.esf.org
http://www.esf.org/activities/exploratory-workshops/workshops-list/workshops-detail.html?ew=6495

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>