Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ground-improvement methods might protect against earthquakes

21.03.2014

Researchers from the University of Texas at Austin's Cockrell School of Engineering are developing ground-improvement methods to help increase the resilience of homes and low-rise structures built on top of soils prone to liquefaction during strong earthquakes.

Findings will help improve the safety of structures in Christchurch and the Canterbury region in New Zealand, which were devastated in 2010 and 2011 by a series of powerful earthquakes. Parts of Christchurch were severely affected by liquefaction, in which water-saturated soil temporarily becomes liquid-like and often flows to the surface creating sand boils.


Researchers are using T-Rex, a 64,000-pound shaker truck, in research to increase the resilience of homes and low-rise structures built on top of soils prone to liquefaction during strong earthquakes. T-Rex is based at a University of Texas at Austin facility that is part of the George E. Brown Jr. Network for Earthquake Engineering Simulation (NEES), a distributed laboratory with 14 sites around the United States. (NEES photo).

"The 2010-2011 Canterbury earthquakes in New Zealand have caused significant damage to many residential houses due to varying degrees of soil liquefaction over a wide extent of urban areas unseen in past destructive earthquakes," said Kenneth Stokoe, a professor in the Department of Civil, Architectural and Environmental Engineering.

"One critical problem facing the rebuilding effort is that the land remains at risk of liquefaction in future earthquakes. Therefore, effective engineering solutions must be developed to increase the resilience of homes and low-rise structures."

... more about:
»Canterbury »Engineering »NEES »Zealand »earthquake

Researchers have conducted a series of field trials to test shallow-ground-improvement methods.

"The purpose of the field trials was to determine if and which improvement methods achieve the objectives of inhibiting liquefaction triggering in the improved ground and are cost-effective measures," said Stokoe, working with Brady Cox, an assistant professor of civil engineering. "This knowledge is needed to develop foundation design solutions."

Findings were detailed in a research paper presented in December at the New Zealand – Japan Workshop on Soil Liquefaction during Recent large-Scale Earthquakes. The paper was authored by Stokoe, graduate students Julia Roberts and Sungmoon Hwang; Cox and operations manager Farn-Yuh Menq from the University of Texas at Austin; and Sjoerd Van Ballegooy from Tonkin & Taylor Ltd, an international environmental and engineering consulting firm in Auckland, New Zealand.

The researchers collected data from test sections of improved and unimproved soils that were subjected to earthquake stresses using a large mobile shaker, called T-Rex, and with explosive charges planted underground. The test sections were equipped with sensors to monitor key factors including ground motion and water pressure generated in soil pores during the induced shaking, providing preliminary data to determine the most effective ground-improvement method.

Four ground-improvement methods were initially selected for the testing: rapid impact compaction (RIC); rammed aggregate piers (RAP), which consist of gravel columns; low-mobility grouting (LMG); and construction of a single row of horizontal beams (SRB) or a double row of horizontal beams (DRB) beneath existing residential structures via soil-cement mixing.

"The results are being analyzed, but good and poor performance can already be differentiated," Stokoe said. "The ground-improvement methods that inhibited liquefaction triggering the most were RIC, RAP, and DRB. However, additional analyses are still underway."

The test site is located along the Avon River in the Christchurch suburb of Bexley. The work is part of a larger testing program that began in early 2013 with a preliminary evaluation by Brady Cox of seven potential test sites along the Avon River in the Christchurch area.

Funding for the research has been provided, in part, by the National Science Foundation and is affiliated with the NSF's George E. Brown Jr. Network for Earthquake Engineering Simulation (NEES). The remainder of the funding has been provided by the Earthquake Commission of the New Zealand Government.

The 64,000-pound T-Rex, operated by NEES@UTexas at UT Austin, is used to simulate a wide range of earthquake shaking levels.

NEES is a shared network of 14 experimental facilities, collaborative tools, centralized data repository and earthquake simulation software, all linked by high-speed Internet connections. 

Writer: Emil Venere, 765-494-4709, venere@purdue.edu 

Sources: Kenneth H. Stokoe, 512-232-3689, k.stokoe@mail.utexas.edu

Sandra Zaragoza, UT Austin media contact, 512-471-2129, zaragoza@utexas.edu

Emil Venere | EurekAlert!

Further reports about: Canterbury Engineering NEES Zealand earthquake

More articles from Earth Sciences:

nachricht Research spotlights a previously unknown microbial 'drama' playing in the Southern Ocean
31.07.2015 | National Science Foundation

nachricht Past and present sea levels in the Chesapeake Bay Region, USA
29.07.2015 | Geological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Tool making and additive technology exhibition: Fraunhofer IPT at Formnext

31.07.2015 | Trade Fair News

First Siemens-built Thameslink train arrives in London

31.07.2015 | Transportation and Logistics

California 'rain debt' equal to average full year of precipitation

31.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>