Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ground-improvement methods might protect against earthquakes


Researchers from the University of Texas at Austin's Cockrell School of Engineering are developing ground-improvement methods to help increase the resilience of homes and low-rise structures built on top of soils prone to liquefaction during strong earthquakes.

Findings will help improve the safety of structures in Christchurch and the Canterbury region in New Zealand, which were devastated in 2010 and 2011 by a series of powerful earthquakes. Parts of Christchurch were severely affected by liquefaction, in which water-saturated soil temporarily becomes liquid-like and often flows to the surface creating sand boils.

Researchers are using T-Rex, a 64,000-pound shaker truck, in research to increase the resilience of homes and low-rise structures built on top of soils prone to liquefaction during strong earthquakes. T-Rex is based at a University of Texas at Austin facility that is part of the George E. Brown Jr. Network for Earthquake Engineering Simulation (NEES), a distributed laboratory with 14 sites around the United States. (NEES photo).

"The 2010-2011 Canterbury earthquakes in New Zealand have caused significant damage to many residential houses due to varying degrees of soil liquefaction over a wide extent of urban areas unseen in past destructive earthquakes," said Kenneth Stokoe, a professor in the Department of Civil, Architectural and Environmental Engineering.

"One critical problem facing the rebuilding effort is that the land remains at risk of liquefaction in future earthquakes. Therefore, effective engineering solutions must be developed to increase the resilience of homes and low-rise structures."

... more about:
»Canterbury »Engineering »NEES »Zealand »earthquake

Researchers have conducted a series of field trials to test shallow-ground-improvement methods.

"The purpose of the field trials was to determine if and which improvement methods achieve the objectives of inhibiting liquefaction triggering in the improved ground and are cost-effective measures," said Stokoe, working with Brady Cox, an assistant professor of civil engineering. "This knowledge is needed to develop foundation design solutions."

Findings were detailed in a research paper presented in December at the New Zealand – Japan Workshop on Soil Liquefaction during Recent large-Scale Earthquakes. The paper was authored by Stokoe, graduate students Julia Roberts and Sungmoon Hwang; Cox and operations manager Farn-Yuh Menq from the University of Texas at Austin; and Sjoerd Van Ballegooy from Tonkin & Taylor Ltd, an international environmental and engineering consulting firm in Auckland, New Zealand.

The researchers collected data from test sections of improved and unimproved soils that were subjected to earthquake stresses using a large mobile shaker, called T-Rex, and with explosive charges planted underground. The test sections were equipped with sensors to monitor key factors including ground motion and water pressure generated in soil pores during the induced shaking, providing preliminary data to determine the most effective ground-improvement method.

Four ground-improvement methods were initially selected for the testing: rapid impact compaction (RIC); rammed aggregate piers (RAP), which consist of gravel columns; low-mobility grouting (LMG); and construction of a single row of horizontal beams (SRB) or a double row of horizontal beams (DRB) beneath existing residential structures via soil-cement mixing.

"The results are being analyzed, but good and poor performance can already be differentiated," Stokoe said. "The ground-improvement methods that inhibited liquefaction triggering the most were RIC, RAP, and DRB. However, additional analyses are still underway."

The test site is located along the Avon River in the Christchurch suburb of Bexley. The work is part of a larger testing program that began in early 2013 with a preliminary evaluation by Brady Cox of seven potential test sites along the Avon River in the Christchurch area.

Funding for the research has been provided, in part, by the National Science Foundation and is affiliated with the NSF's George E. Brown Jr. Network for Earthquake Engineering Simulation (NEES). The remainder of the funding has been provided by the Earthquake Commission of the New Zealand Government.

The 64,000-pound T-Rex, operated by NEES@UTexas at UT Austin, is used to simulate a wide range of earthquake shaking levels.

NEES is a shared network of 14 experimental facilities, collaborative tools, centralized data repository and earthquake simulation software, all linked by high-speed Internet connections. 

Writer: Emil Venere, 765-494-4709, 

Sources: Kenneth H. Stokoe, 512-232-3689,

Sandra Zaragoza, UT Austin media contact, 512-471-2129,

Emil Venere | EurekAlert!

Further reports about: Canterbury Engineering NEES Zealand earthquake

More articles from Earth Sciences:

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>