Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why is Greenland covered in ice?

01.09.2008
Only changes in carbon dioxide levels are able to explain the transition from the mostly ice-free Greenland of three million years ago, to the ice-covered Greenland of today

There have been many reports in the media about the effects of global warming on the Greenland ice-sheet, but there is still great uncertainty as to why there is an ice-sheet there at all.

Reporting on 28 August in the journal Nature, scientists at the University of Bristol and the University of Leeds show that only changes in atmospheric carbon dioxide are able to explain the transition from the mostly ice-free Greenland of three million years ago, to the ice-covered Greenland of today.

Understanding why the ice formed on Greenland three million years ago will help understand the possible response of the ice sheet to future climate change.

Dr Dan Lunt from the University of Bristol and funded by the British Antarctic Survey, explained: "Evidence shows that around three million years ago there was an increase in the amount of rock and debris deposited on the ocean floor around Greenland. These rocks could not have got there until icebergs started to form and could transport them, indicating that large amounts of ice on Greenland only began to form about three million years ago.

"Prior to that, Greenland was largely ice-free and probably covered in grass and forest. Furthermore, atmospheric carbon dioxide levels were relatively high. So the question we wanted to answer was why did Greenland become covered in an ice-sheet?"

There are several competing theories, ranging from changes in ocean circulation, the increasing height of the Rocky Mountains, changes in the Earth's orbit, and natural changes in atmospheric greenhouse gas concentrations. Using state-of-the-art computer climate and ice-sheet models, Lunt and colleagues decided to test which, if any, of these theories was the most credible.

While the results suggest that climatic shifts associated with changes in ocean circulation and tectonic uplift did affect the amount of ice cover, and that the ice waxed and waned with changes in the Earth's orbit, none of these changes were large enough to contribute significantly to the long-term growth of the Greenland ice sheet.

Instead, the new research suggests that the dominant cause of the Greenland glaciation was the fall from high atmospheric carbon dioxide levels to levels closer to that of pre-industrial times. Today concentrations are approaching the levels that existed while Greenland was mostly ice-free.

Dr Alan Haywood from the University of Leeds added: "So why did elevated atmospheric carbon dioxide concentrations fall to levels similar to the pre-industrial era? That is the million dollar question which researchers will no doubt be trying to answer during the next few years."

The paper: 'Late Pliocene Greenland glaciation controlled by a decline in atmospheric CO2 levels', by Daniel J. Lunt, Gavin L. Foster, Alan M. Haywood, and Emma J. Stone. Nature, 28 August 2008, doi:10.1038/nature07223.

This work was carried out in the framework of the British Antarctic Survey Greenhouse to ice-house: Evolution of the Antarctic Cryosphere and Palaeoenvironment programme. Dan J.Lunt is funded by British Antarctic Survey and Research Councils UK fellowships. Gavin L. Foster is funded by a NERC research fellowship. Emma J Stone is funded by a NERC studentship.

The University of Bristol was founded in 1876 as University College, Bristol. It was the first higher education institution in England to admit women on an equal basis with men. The University is internationally distinguished, a world leader in research, a member of the Russell Group and of the Worldwide Universities Network. It has around 12,500 undergraduate and 3,500 postgraduate students and organises its academic affairs in six faculties with some 45 departments and 15 research centres.

In the 2001 Research Assessment Exercise, 15 of the University's units of assessment achieved the top grade of 5* and a further 21 were awarded grade 5. Thus 36 (78 per cent) of the 46 units of assessment were judged as world class or of international standing. Seventy-six per cent of the academic staff work in departments ranked at these levels. For further information, please see our website: www.bristol.ac.uk

British Antarctic Survey (BAS) is a world leader in research into global environmental issues. With an annual budget of around £45 million, five Antarctic Research Stations, two Royal Research Ships and five aircraft BAS undertakes an interdisciplinary research programme and plays an active and influential role in Antarctic affairs. BAS has joint research projects with over 40 UK universities and has more than 120 national and international collaborations. It is a component of the Natural Environment Research Council. More information about the work of the Survey can be found at: www.antarctica.ac.uk

The University of Leeds is one of the largest higher education institutions in the UK with more than 30,000 students from 130 countries. With a turnover of £450m, Leeds is one of the top ten research universities in the UK, and a member of the Russell Group of research-intensive universities. It was placed 80th in the 2007 Times Higher Educational Supplement's world universities league table and the University's vision is to secure a place among the world's top 50 by 2015. www.leeds.ac.uk

Issued by: Public Relations Office, Communications and Marketing Services, University of Bristol. Contact: Cherry Lewis, Research Communications Manager. Tel: 0117 928 8086, mob: 07729 421885, email: Cherry.lewis@bristol.ac.uk

Cherry Lewis | EurekAlert!
Further information:
http://www.bristol.ac.uk
http://www.bris.ac.uk/fluff/u/inclel/F_qb6_P0jJDAYaKFGOn9SQxe/

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>