Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global Warming Predictions Are Overestimated, Suggests Study on Black Carbon

21.11.2008
A detailed analysis of black carbon -- the residue of burned organic matter -- in computer climate models suggests that those models may be overestimating global warming predictions.

A new Cornell study, published online in Nature Geoscience, quantified the amount of black carbon in Australian soils and found that there was far more than expected, said Johannes Lehmann, the paper's lead author and a Cornell professor of biogeochemistry. The survey was the largest of black carbon ever published.

As a result of global warming, soils are expected to release more carbon dioxide, the major greenhouse gas, into the atmosphere, which, in turn, creates more warming. Climate models try to incorporate these increases of carbon dioxide from soils as the planet warms, but results vary greatly when realistic estimates of black carbon in soils are included in the predictions, the study found.

Soils include many forms of carbon, including organic carbon from leaf litter and vegetation and black carbon from the burning of organic matter. It takes a few years for organic carbon to decompose, as microbes eat it and convert it to carbon dioxide. But black carbon can take 1,000-2,000 years, on average, to convert to carbon dioxide.

By entering realistic estimates of stocks of black carbon in soil from two Australian savannas into a computer model that calculates carbon dioxide release from soil, the researchers found that carbon dioxide emissions from soils were reduced by about 20 percent over 100 years, as compared with simulations that did not take black carbon's long shelf life into account.

The findings are significant because soils are by far the world's largest source of carbon dioxide, producing 10 times more carbon dioxide each year than all the carbon dioxide emissions from human activities combined. Small changes in how carbon emissions from soils are estimated, therefore, can have a large impact.

"We know from measurements that climate change today is worse than people have predicted," said Lehmann. "But this particular aspect, black carbon's stability in soil, if incorporated in climate models, would actually decrease climate predictions."

The study quantified the amount of black carbon in 452 Australian soils across two savannas. Black carbon content varied widely, between zero and more than 80 percent, in soils across Australia.

"It's a mistake to look at soil as one blob of carbon," said Lehmann. "Rather, it has different chemical components with different characteristics. In this way, soil will interact differently to warming based on what's in it."

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>