Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geology research in Lund receives SEK 40 million

21.12.2011
Within the space of a week, Lund University’s geology researchers have raked in SEK 40 million.
Professor Birger Schmitz has received SEK 25 million for his ground breaking research on the meteorite flux to earth that has been taking place for billions of years. Professor Daniel Conley has received SEK 15 million for research on how carbon dioxide levels in the atmosphere have varied in the past.

Both Birger Schmitz and Daniel Conley are based at the Department of Earth and Ecosystem Sciences at Lund University, Sweden.

Birger Schmitz is a bedrock geologist and a world leader in the emerging field of research on the history of life from a broader astronomical perspective. He has received SEK 25 million from the European Research Council (ERC), which is a desirable and prestigious honour in the research community.

With the help of an amateur geologist and three quarry workers, Birger Schmitz has previously uncovered over 90 fossilised meteorites in 470 million year old bedrock in Västergötland, Sweden – a unique find. The meteorites come from one of the largest explosions in the recent history of the solar system, when a comet broke up an asteroid of several hundred kilometres diameter between Mars and Jupiter, which had consequences for life on earth. Still today, around a third of meteorites that fall to earth come from this event that happened 470 million years ago.

In the new ERC-funded project, Astrogeobiosphere, Birger Schmitz has developed pioneering methods to link the evolution of life to events in the history of the solar system and the galaxy. By studying microscopic extraterrestrial minerals in sediment from different periods in the history of the earth, the origins of the astronomical body that wiped out the dinosaurs 65 million years ago could be traced. Using the new methods, the movement of the solar system through the spiral arms of the galaxy, as well as the rotation of the galaxy, can be traced in sediment that has been deposited on earth over billions of years. According to the ERC, Birger Schmitz project has paved the way for a whole new interdisciplinary research field in the interface between geology, astronomy and biology.

Daniel Conley is a biogeochemist and conducts research on oxygen deficiency and dead seabeds in the Baltic Sea and on how levels of carbon dioxide in the atmosphere have varied in the past, on a time scale from tens of thousands to millions of years. His work has now been recognised by the Knut and Alice Wallenberg Foundation (KAW), which at its latest board meeting appointed his as one of the participants in the Wallenberg Scholars programme. The appointment comes with financial support of SEK 15 million, to be used freely for research projects. Conley has been awarded the funding for the part of his research that concerns carbon dioxide levels in the atmosphere. He obtains his research results by analysing ancient sediment layers below the seabed in various locations around the world.

“In order to understand climate change and the greenhouse effect, we need to know more about how carbon dioxide levels in the atmosphere have varied in the past”, says Professor Conley.

For more information, please contact:

Birger Schmitz, tel. +46 768 565568, Birger.Schmitz@geol.lu.se or

Daniel Conley, tel. +46 46 222 0449, Daniel.Conley@geol.lu.se

Megan Grindlay | idw
Further information:
http://www.lu.se

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>