Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geology research in Lund receives SEK 40 million

21.12.2011
Within the space of a week, Lund University’s geology researchers have raked in SEK 40 million.
Professor Birger Schmitz has received SEK 25 million for his ground breaking research on the meteorite flux to earth that has been taking place for billions of years. Professor Daniel Conley has received SEK 15 million for research on how carbon dioxide levels in the atmosphere have varied in the past.

Both Birger Schmitz and Daniel Conley are based at the Department of Earth and Ecosystem Sciences at Lund University, Sweden.

Birger Schmitz is a bedrock geologist and a world leader in the emerging field of research on the history of life from a broader astronomical perspective. He has received SEK 25 million from the European Research Council (ERC), which is a desirable and prestigious honour in the research community.

With the help of an amateur geologist and three quarry workers, Birger Schmitz has previously uncovered over 90 fossilised meteorites in 470 million year old bedrock in Västergötland, Sweden – a unique find. The meteorites come from one of the largest explosions in the recent history of the solar system, when a comet broke up an asteroid of several hundred kilometres diameter between Mars and Jupiter, which had consequences for life on earth. Still today, around a third of meteorites that fall to earth come from this event that happened 470 million years ago.

In the new ERC-funded project, Astrogeobiosphere, Birger Schmitz has developed pioneering methods to link the evolution of life to events in the history of the solar system and the galaxy. By studying microscopic extraterrestrial minerals in sediment from different periods in the history of the earth, the origins of the astronomical body that wiped out the dinosaurs 65 million years ago could be traced. Using the new methods, the movement of the solar system through the spiral arms of the galaxy, as well as the rotation of the galaxy, can be traced in sediment that has been deposited on earth over billions of years. According to the ERC, Birger Schmitz project has paved the way for a whole new interdisciplinary research field in the interface between geology, astronomy and biology.

Daniel Conley is a biogeochemist and conducts research on oxygen deficiency and dead seabeds in the Baltic Sea and on how levels of carbon dioxide in the atmosphere have varied in the past, on a time scale from tens of thousands to millions of years. His work has now been recognised by the Knut and Alice Wallenberg Foundation (KAW), which at its latest board meeting appointed his as one of the participants in the Wallenberg Scholars programme. The appointment comes with financial support of SEK 15 million, to be used freely for research projects. Conley has been awarded the funding for the part of his research that concerns carbon dioxide levels in the atmosphere. He obtains his research results by analysing ancient sediment layers below the seabed in various locations around the world.

“In order to understand climate change and the greenhouse effect, we need to know more about how carbon dioxide levels in the atmosphere have varied in the past”, says Professor Conley.

For more information, please contact:

Birger Schmitz, tel. +46 768 565568, Birger.Schmitz@geol.lu.se or

Daniel Conley, tel. +46 46 222 0449, Daniel.Conley@geol.lu.se

Megan Grindlay | idw
Further information:
http://www.lu.se

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>