Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists Find Ponds Not the Cause of Arsenic Poisoning in India's Groundwater

04.11.2011
The source of arsenic in India's groundwater continues to elude scientists more than a decade after the toxin was discovered in the water supply of the Bengal delta in India. But a recent study with a Kansas State University geologist and graduate student, as well as Tulane University, has added a twist -- and furthered the mystery.

Arsenic is a naturally occurring trace element, and it causes skin lesions, respiratory failure and cancer when present in high concentrations in drinking water. The environmental crisis began after large traces of the element were detected in the groundwater in the Bengal Basin -- an area inhabited by more than 60 million residents. This has caused a water shortage, illness and death in the region, leaving residents unable to even use the water for ordinary tasks like washing dishes or ablution.

"It's an awful situation," said Saugata Datta, a Kansas State University assistant professor of geology. "This is one of the worst mass poisoning cases in this history of mankind."

Though no definitive arsenic source has been determined, many geologists have claimed that recent man-made ponds in the region are a major contributor, as the heavy rainfall and erosion have created high amounts of organic material -- containing arsenic -- in the ponds. From there the pond's water and organic material seep into the groundwaters.

Datta and colleagues recently completed a study looking at the ponds. Their findings, "Perennial ponds are not an important source of water or dissolved organic matter to groundwaters with high arsenic concentration in West Bengal, India," was published in Geophysical Research Letters in late October, and it also appeared in the journal Nature.

"Our study suggests that ponds are not contributing substantial amount of water or this old organic matter into the groundwaters in the shallow aquifer in this region," Datta said. "These very high arsenic levels are actually coming from something else, possibly from within the organic matter contained in these Holocene sedimentary basins."

Datta, along with Tulane University colleague Karen Johannesson -- the study's other lead investigator -- came to this conclusion after modeling the transport of the pond's organic matter through the meters of sand and clay to the aquifers below. Because of the organic matter's highly reactive nature to minerals -- like arsenic -- researchers found that this organic matter actually serves as a retardant and causes minerals to absorb more slowly into the aquifer sediments.

"Characteristically the organic matter is very sticky and likes to glom onto mineral surfaces," Johannesson said. "So it takes much longer for the organic matter to move the same distance along a groundwater flow path than it does through just the water itself."

According to their model, it would take thousands of years to reach roughly 30 meters into the aquifers in the Bengal delta, which is where we see this peak of arsenic.

"These high arsenic waters at the 30 meter depth are approximately 50 years old," Datta said. "Since the ponds that supply the organic matter have been around for thousands of years, the current ponds would not be the source of this organic matter."

The team created their model partially based on stable isotope data at Kansas State University's Stable Isotope Spectrometry Laboratory. The lab is operated by Troy Ocheltree, a biology research assistant who co-authored the study.

In the near future, Datta, Sankar Manalikada Sasidharan, a geology graduate student, India, and Sophia Ford, a geology undergraduate student, Wilson, will travel to the region to collect groundwater and aquifer sediment samples for an extensive study that accounts for various valleys and ponds. In addition to arsenic, the team will also monitor for high concentrations of manganese, as scientists are finding that the two metals often appear together.

"The work that we've started to look into this source mechanism release in the Bengal delta is still far from being solved," Datta said. "The mystery still remains. We just added a little bit more to it."

The study was partially funded by a hydrology grant from the National Science Foundation.

Saugata Datta, 785-532-2241, sdatta@k-state.edu

Saugata Datta | Newswise Science News
Further information:
http://www.k-state.edu

More articles from Earth Sciences:

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

nachricht New research unlocks forests' potential in climate change mitigation
21.04.2017 | Clemson University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>