Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Full Look at Prehistoric New Zealand Penguin

28.02.2012
After 35 years, a giant fossil penguin has finally been completely reconstructed, giving researchers new insights into prehistoric penguin diversity.

The bones were collected in 1977 by Dr. Ewan Fordyce, a paleontologist from the University of Otago, New Zealand. In 2009 and 2011, Dr. Dan Ksepka, North Carolina State University research assistant professor of marine, earth and atmospheric sciences and North Carolina Museum of Natural Sciences colleague Dr. Paul Brinkman traveled to New Zealand to aid in the reconstruction of the giant penguin fossil.

Researchers dubbed the penguin Kairuku, a Maori word that loosely translates to “diver who returns with food.” Ksepka was interested in the fossil because its body shape is different from any previously known penguin, living or extinct. He was also interested in the diversity of penguin species that lived in what is now New Zealand during the Oligocene period, approximately 25 million years ago.

According to Ksepka, “The location was great for penguins in terms of both food and safety. Most of New Zealand was underwater at that time, leaving isolated, rocky land masses that kept the penguins safe from potential predators and provided them with a plentiful food supply.”

Kairuku was one of at least five different species of penguin that lived in New Zealand during the same period. The diversity of species is part of what made the reconstruction difficult, and the penguin’s unique physique added to the difficulty.

“Kairuku was an elegant bird by penguin standards, with a slender body and long flippers, but short, thick legs and feet,” says Ksepka. “If we had done a reconstruction by extrapolating from the length of its flippers, it would have stood over 6 feet tall. In reality, Kairuku was around 4-feet-2 inches tall or so.”

The researchers reconstructed Kairuku from two separate fossils, using the skeleton of an existing king penguin as a model. The result is a tall bird with an elongated beak and long flippers – easily the largest of the five species that were common to the area in that time period.

Their results appear in the Journal of Vertebrate Paleontology.

New Zealand has a history of producing exceptional fossils that give important insights into the history of penguins and other marine creatures. Ksepka hopes that the reconstruction of Kairuku will give other paleontologists more information about some the other fossils found in that area as well as add to the knowledge about giant penguin species. “This species gives us a more complete picture of these giant penguins generally, and may help us to determine how great their range was during the Oligocene period.”

Ksepka’s research was funded by a grant from the National Science Foundation and support from the University of Otago. Ksepka has a research appointment at the North Carolina Museum of Natural Sciences. The Department of Marine, Earth and Atmospheric Sciences is part of the College of Physical and Mathematical Sciences.

-peake-

Note to editors: An abstract of the paper follows.

“New Fossil Penguins (Aves, Sphenisciformes) from the Oligocene of New Zealand Reveal the Skeletal Plan of Stem Penguins”

Authors: Daniel T. Ksepka, North Carolina State University and the North Carolina Museum of Natural Sciences; R. Ewan Fordyce, Tatsuro Ando, Craig M. Jones, University of Otago, New Zealand, et al.

Published: Feb. 27, 2012, in the Journal of Vertebrate Paleontology

Abstract: Three skeletons collected from the late Oligocene Kokoamu Greensand of New Zealand are among the most complete Paleogene penguins known. These specimens, described here as Kairuku waitaki, gen. et sp. nov., and Kairuku grebneffi, sp. nov., reveal new details of key elements of the stem penguin skeleton associated with underwater flight, including the sternum, flipper, and pygostyle. Relative proportions of the trunk, flippers, and hind limbs can now be determined from a single individual for the first time, offering insight into the body plan of stem penguins and improved constraints on size estimates for ‘giant’ taxa. Kairuku is characterized by an elongate, narrow sternum, a short and flared coracoid, an elongate narrow flipper, and a robust hind limb. The pygostyle of Kairuku lacks the derived triangular cross-section seen in extant penguins, suggesting that the rectrices attached in a more typical avian pattern and the tail may have lacked the propping function utilized by living penguins. New materials described here, along with re-study of previously described specimens, resolve several long-standing phylogenetic, biogeographic, and taxonomic issues stemming from the inadequate comparative material of several of the first-named fossil penguin species. An array of partial associated skeletons from the Eocene–Oligocene of New

Zealand historically referred to Palaeeudyptes antarcticus or Palaeeudyptes sp. are recognized as at least five distinct species: Palaeeudyptes antarcticus, Palaeeudyptes marplesi, Kairuku waitaki, Kairuku grebneffi, and an unnamed Burnside Formation species.

Tracey Peake | Newswise Science News
Further information:
http://www.ncsu.edu

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>