Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Full Look at Prehistoric New Zealand Penguin

28.02.2012
After 35 years, a giant fossil penguin has finally been completely reconstructed, giving researchers new insights into prehistoric penguin diversity.

The bones were collected in 1977 by Dr. Ewan Fordyce, a paleontologist from the University of Otago, New Zealand. In 2009 and 2011, Dr. Dan Ksepka, North Carolina State University research assistant professor of marine, earth and atmospheric sciences and North Carolina Museum of Natural Sciences colleague Dr. Paul Brinkman traveled to New Zealand to aid in the reconstruction of the giant penguin fossil.

Researchers dubbed the penguin Kairuku, a Maori word that loosely translates to “diver who returns with food.” Ksepka was interested in the fossil because its body shape is different from any previously known penguin, living or extinct. He was also interested in the diversity of penguin species that lived in what is now New Zealand during the Oligocene period, approximately 25 million years ago.

According to Ksepka, “The location was great for penguins in terms of both food and safety. Most of New Zealand was underwater at that time, leaving isolated, rocky land masses that kept the penguins safe from potential predators and provided them with a plentiful food supply.”

Kairuku was one of at least five different species of penguin that lived in New Zealand during the same period. The diversity of species is part of what made the reconstruction difficult, and the penguin’s unique physique added to the difficulty.

“Kairuku was an elegant bird by penguin standards, with a slender body and long flippers, but short, thick legs and feet,” says Ksepka. “If we had done a reconstruction by extrapolating from the length of its flippers, it would have stood over 6 feet tall. In reality, Kairuku was around 4-feet-2 inches tall or so.”

The researchers reconstructed Kairuku from two separate fossils, using the skeleton of an existing king penguin as a model. The result is a tall bird with an elongated beak and long flippers – easily the largest of the five species that were common to the area in that time period.

Their results appear in the Journal of Vertebrate Paleontology.

New Zealand has a history of producing exceptional fossils that give important insights into the history of penguins and other marine creatures. Ksepka hopes that the reconstruction of Kairuku will give other paleontologists more information about some the other fossils found in that area as well as add to the knowledge about giant penguin species. “This species gives us a more complete picture of these giant penguins generally, and may help us to determine how great their range was during the Oligocene period.”

Ksepka’s research was funded by a grant from the National Science Foundation and support from the University of Otago. Ksepka has a research appointment at the North Carolina Museum of Natural Sciences. The Department of Marine, Earth and Atmospheric Sciences is part of the College of Physical and Mathematical Sciences.

-peake-

Note to editors: An abstract of the paper follows.

“New Fossil Penguins (Aves, Sphenisciformes) from the Oligocene of New Zealand Reveal the Skeletal Plan of Stem Penguins”

Authors: Daniel T. Ksepka, North Carolina State University and the North Carolina Museum of Natural Sciences; R. Ewan Fordyce, Tatsuro Ando, Craig M. Jones, University of Otago, New Zealand, et al.

Published: Feb. 27, 2012, in the Journal of Vertebrate Paleontology

Abstract: Three skeletons collected from the late Oligocene Kokoamu Greensand of New Zealand are among the most complete Paleogene penguins known. These specimens, described here as Kairuku waitaki, gen. et sp. nov., and Kairuku grebneffi, sp. nov., reveal new details of key elements of the stem penguin skeleton associated with underwater flight, including the sternum, flipper, and pygostyle. Relative proportions of the trunk, flippers, and hind limbs can now be determined from a single individual for the first time, offering insight into the body plan of stem penguins and improved constraints on size estimates for ‘giant’ taxa. Kairuku is characterized by an elongate, narrow sternum, a short and flared coracoid, an elongate narrow flipper, and a robust hind limb. The pygostyle of Kairuku lacks the derived triangular cross-section seen in extant penguins, suggesting that the rectrices attached in a more typical avian pattern and the tail may have lacked the propping function utilized by living penguins. New materials described here, along with re-study of previously described specimens, resolve several long-standing phylogenetic, biogeographic, and taxonomic issues stemming from the inadequate comparative material of several of the first-named fossil penguin species. An array of partial associated skeletons from the Eocene–Oligocene of New

Zealand historically referred to Palaeeudyptes antarcticus or Palaeeudyptes sp. are recognized as at least five distinct species: Palaeeudyptes antarcticus, Palaeeudyptes marplesi, Kairuku waitaki, Kairuku grebneffi, and an unnamed Burnside Formation species.

Tracey Peake | Newswise Science News
Further information:
http://www.ncsu.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>